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Zusammenfassung

Word Embeddings sind ein Verfahren der distributionellen
Semantik und werden zunehmend zur Untersuchung von
Wortwandel genutzt. Allerdings sind typische Erstellungs-
verfahren probabilistisch, was ihre Zuverlässigkeit und damit
auch die Reproduzierbarkeit von Studien limitiert.
Ich habe dieses Problem sowohl theoretisch als auch expe-
rimentell untersucht und festgestellt, dass Varianten des
SVDPPMI Algorithmus davon unbetroffen sind.
Zusätzlich habe ich die JeSemE Webseite entwickelt, die
diachrone Studien auf Basis von Word Embeddings ohne
technisches Vorwissen ermöglicht. JeSemE bietet Zugriff
auf Trends in Denotation und emotionaler Konnotation
für fünf diachrone Korpora.
Meinen distributionellen Ansatz habe ich in zwei Fallstu-
dien getestet, die sich mit der Geschichte der Elektrizitäts-
forschung und mit Wörtern von Bedeutung für die Epoche
der Romantik auseinandersetzen. Sie haben gezeigt, dass
distributionelle Methoden ein wertvolles Werkzeug für die
digitalen Geisteswissenschaften sein können.
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Abstract

Word embeddings are a form of distributional semantics
increasingly popular for investigating lexical semantic change.
However, typical training algorithms are probabilistic, lim-
iting their reliability and the reproducibility of studies.
I investigated this problem both empirically and theoreti-
cally and found some variants of the SVDPPMI algorithm
to be unaffected.
Furthermore, I created the JeSemE website to make word
embedding based diachronic research more accessible. It
provides information on changes in word denotation and
emotional connotation in five diachronic corpora.
Finally, I conducted two case studies on the applicabil-
ity of these methods by investigating the historical un-
derstanding of electricity as well as words connected to
Romanticism. They showed the high potential of distri-
butional semantics for further applications in the digital
humanities.
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CBOW Continuous Bag-of-Words, a word embedding
algorithm, see Section 2.3.3.
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archive core corpus’], see Section 3.2.

GBF English Fiction subset of the Google Books Ngram
corpus, see Section 3.3.

GBG German sub-corpus of the Google Books Ngram
corpus, see Section 3.3.

GloVe Global Vectors, a word embedding algorithm,
see Section 2.3.4.

NN Artificial Neural Networks, a machine learning ap-
proach inspired by biological neurons, see Section
2.3.3.

PMI Pointwise Mutual Information, a word association
measure, see Section 2.2.1.

PPMI Positive Pointwise Mutual Information (PMI),
a variant of the PMI word association measure, see
Section 2.2.1.
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xxii IMPORTANT ABBREVIATIONS

RSC Royal Society Corpus, see Section 3.4.

SG Skip-gram, a word embedding algorithm, see Sec-
tion 2.3.3.

SGNS Skip-gram Negative Sampling, a more efficient
variant of the SG word embedding algorithm, see
Section 2.3.3.

SGHS Skip-gram Hierarchical Softmax, a more efficient
variant of the SG word embedding algorithm, see
Section 2.3.3.

SVD Singular Value Decomposition, a linear algebra
method for reducing the dimensionality of data, see
Section 2.3.2.

SVDPPMI Singular Value Decomposition of a PPMI ma-
trix, a word embedding algorithm, see Section 2.3.2.

SVDwPPMI Singular Value Decomposition of a PPMI
matrix with weighting-based downsampling, a word
embedding algorithm, see Sections 2.3.2 & 4.6.

VAD Valence-Arousal-Dominance, a three-dimensional
model for emotions, see Section 5.1.1.

χ2 Pearson’s χ2, a word association measure, see Section
2.2.1.







Chapter 1

Introduction

Computational studies of lexical semantics and semantic change are
increasingly popular (see e.g., Manning (2015), Kutuzov et al. (2018)),
due to both the availability of large corpora containing up to 6% of
all books ever published (Michel et al., 2011) and the development of
word embeddings. Word embeddings (e.g., word2vec by Mikolov
et al. (2013a,b)) represent lexical semantics with numerical vectors
by observing the “company” each word “keeps” (Firth, 1968, p. 11),
i.e., its co-occurrence patterns. They can be used to measure word
similarity, transforming the long ongoing practice of corpus-based
studies in (historical) linguistics (Biber et al., 2000; Hilpert & Gries,
2009; Kohnen, 2006).
However, as with every new method, researchers must make sure
that results are both valid—they measure what they are intended to
measure—and reliable—repeated measurements are consistent with
each other (Carmines & Zeller, 1992, pp. 11–12). The latter, however,
is lacking for most word embedding algorithms (Antoniak & Mimno,
2018; Chugh et al., 2018; Hellrich & Hahn, 2016b, 2017a; Pierrejean
& Tanguy, 2018a; Wendlandt et al., 2018). These unreliable methods
can mislead scholars, as data-driven analyses of large corpora—also
known as ‘distant reading’ (Moretti, 2013)—are increasingly popular
in the digital humanities and social sciences (e.g., Michel et al. (2011),
Jockers (2013)). Unreliable methods might also affect business and
governmental decisions by impeding, e.g., the automatic maintenance
of knowledge resources (e.g., Klenner & Hahn (1994)) or the obser-
vation of trends in social media (e.g., Preoţiuc-Pietro et al. (2016) or
Arendt & Volkova (2017)).

1



2 CHAPTER 1. INTRODUCTION

Automatic diachronic studies are not only impeded by unreliable
methods, but also by barriers excluding many potential users. Up
to now, the usage of word embeddings requires programming skills,
non-trivial computational resources and sometimes also pay-to-use
corpora. This complicates their use for many scholars as they lack
one or more of these prerequisites. A potential solution are websites
providing access to statistical analyses (e.g., Davies (2014), Jurish
(2015)) and diachronic lexical semantics (Hellrich et al., 2018a; Hell-
rich & Hahn, 2017b) derived from word embeddings.
This thesis tackles the above-mentioned issues and provides two case
studies on using word embeddings to investigate the history of science
and words related to Romanticism. Thus, it is concerned with lexical
semantics only and not with other diachronic questions such as the
automatic delimitation of historical epochs (Popescu & Strapparava,
2013) or visualizing changes in lexical resources (Theron & Fontanillo,
2015).

1.1. Words and Meaning

The word word1 is used ambiguously in this thesis to allow for flu-
ent writing despite a mismatch between linguistic definitions2 and
technical possibilities. In general, it is used in the sense of ‘token’,
i.e., an uninterrupted grapheme sequence as occurring in a corpus, as
well as ‘type’, i.e., an element in the set of tokens for a corpus. For
lemmatized corpora, all tokens can be assumed to be replaced with
instances of a (pseudo-)lemma and all types can be assumed to be
equivalent with lexemes. This thesis contains no word-sense-aware
experiments, thus lexical units were never modeled. Words and not
word clusters or concepts3 were chosen to provide a fixed starting
point for analyses.

1 Throughout this thesis, object language will be given in italics.
2 See for example the SIL Glossary: https://glossary.sil.org/ [Accessed

May 28th 2019].
3 Concepts or, more accurately, models approximating these mental represen-

tations, can be used to organize observations and describe historical developments
(Kuukkanen, 2008; Thagard, 1990). However, that line of research is not
concerned with language itself or a link between language and other phenomena,
but with changes in the way these phenomena are defined.

https://glossary.sil.org/
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Word embeddings are a shallow neo-structuralist4 (Geeraerts, 2010)
model of word meaning, i.e., describing words by patterns in their
usage according to a “meaning-is-use theory” (Lyons, 1996, p. 40).
They achieve a high correlation with human judgments when tested
for their ability to measure similarity (Levy et al., 2015). More com-
plex formal approaches for modeling word meaning would assume a
hierarchy, grounding in logic or some kind of semantic primitives (see
e.g., Grefenstette (1994, ch. 2) or Jurafsky & Martin (2009, chs. 17–
20)). Such approaches were avoided in this thesis, as they would lead
to additional levels of abstraction and thus potential artifacts during
data analysis.
From a lingusitic point of view, a word’s meaning contains several
aspects (see e.g., Lyons (1996)). In the following all subjective-
emotional aspects will be referred to as connotation, while other
aspects will be referred to as denotation, even if they are not strictly
referential. For example, according to this definition shrink and
psychotherapist have the same denotation, but the former has a dif-
ferent (i.e., negative) connotation. It is possible to quantify emotional
connotation with several models (Bradley & Lang, 1994; Ekman,
1992). Distributional information can then be used to predict word
emotions, even in a diachronic setting (Cook & Stevenson, 2010;
Turney & Littman, 2003).

1.2. Semantic Change

How languages change is a core question of linguistics and affects
all linguistic levels.5 Probably the most popular research topic is
not semantic change, but sound change which has been used since
the late 18th century to study the genealogical relationships between
languages (e.g., Collinge (1990), Hock (1991, ch. 20)).
Semantic change can take many forms (Blank, 1999; Bloomfield, 1984;
Hock, 1991) which can be roughly grouped into the following three
categories:6

4 Structuralist only from a linguistic, but not from an artificial intelligence
point of view. According to the latter, representations based on non-localized
patterns (such as word embeddings) are connectionist (Hinton, 1986).

5 Some changes even link different levels, e.g., a taboo against uttering a word
may lead to voluntary mispronunciations which can become codified (Hock, 1991,
pp. 296–297).

6 Examples from Bloomfield (1984, pp. 426–427).



4 CHAPTER 1. INTRODUCTION

Widening & Narrowing describe words becoming more general
or more specific in their denotation. An example for widening
is dog, being derived from dogge, the name of a dog breed in
Middle English. Another canine example, Old English hund, lost
its general meaning of ‘dog’ and became hound ‘hunting dog’.

Elevation & Degeneration describe words becoming more or less
positive in their emotional connotation and even denotation (e.g.,
social status). For example, Old English cniht and cnafa both
meant ‘boy, servant’. The former was elevated and became knight,
whereas the latter was degenerated to the modern knave.

Metaphoric use in a very broad sense—including metonymy, synec-
doche, hyperbole, litotes and euphemism (Hock, 1991, p. 285) which
many treat separately (e.g., Bloomfield (1984, ch. 24) or Blank
(1999))—describes words being used in a non-literal yet codified
manner. For example, Old English cēace ‘jaw’ became cheek and
bitter is derived from Germanic *[bitraz] ‘biting’.

Semantic change can be caused by both intra-linguistic and extra-
linguistic developments, making its study salient to linguists and
other scholars alike. In the former case, speakers of different varieties
interact and mix their usage (Schmidt, 2007, pp. 3–5) or learners
acquire words with a too specific or too general meaning due to
repeated miscommunication (Bloomfield, 1984, ch. 24). In the latter
case, cultural or technological developments necessitate a change in
meaning, e.g., words related to livestock being repurposed with the
spread of currency (Bloomfield, 1984, pp. 435–436). This can be due
to a change in the environment, e.g., a sense being added to mouse
due to the development of a vaguely rodent-shaped input device, or
due to a change of environment, e.g., Spanish varieties in Europe and
America use léon for ‘lion’ respectively ‘puma’, depending on which
large predatory cat is local (Blank, 1999).

1.3. Reliability

Reliability and validity are two main criteria that need to be fulfilled
in empirical research. While the former describes how much an
experiment is affected by random errors, the latter is concerned with
non-random biases (Carmines & Zeller, 1992, pp. 11–15).



1.4. CONTRIBUTIONS 5

Unreliable methods lead to experiments which cannot be properly
repeated. However, repeatable experiments are vital for scientific
progress as they enable others to test claims and extend existing work
(see e.g., Mesirov (2010), Ivie & Thain (2018), Open Science Collab-
oration (2015)). Most word embedding algorithms are probabilistic
and thus inherently unable to produce the same results in repeated
experiments, unless their random processes are made deterministic
which can, however, distort experimental results (Henderson et al.,
2018).
So far, the question of reliability for word embedding experiments
was mostly ignored, probably due to embeddings being mostly used as
features in larger systems involving further probabilistic processes. In
contrast, corpus linguistic analyses are commonly done with perfectly
reliable statistical methods—a high standard that should be preserved
for the increasingly popular application of word embeddings as a novel
form of corpus linguistics (see e.g., Jo (2016), Hamilton et al. (2016c),
Kulkarni et al. (2016)).

1.4. Contributions

The main contribution of this thesis lies in the exploration of word
embedding reliability. Reliability problems are mostly ignored, even
though they severely limit the applicability of most word embedding
algorithms as novel corpus linguistics methods. Unreliable methods
can mislead users and contribute to the current reproducibility crisis
(see Section 1.3). However, variants of the SVDPPMI (Levy et al.,
2015) word embedding algorithm—especially my novel SVDwPPMI

(see Section 4.6)—to be perfectly reliable without any loss of accuracy.
This thesis also explores new ways to use information on word change
to track changes in emotional connotation. It also describes the Jena
Semantic Explorer (JeSemE; Hellrich & Hahn (2017b), Hellrich et al.
(2018a)), a website giving non-technical users access to state-of-the-
art distributional semantics. Prior work on historical lexical emotion
is very limited and used simplistic emotion models (i.e., words are
either ‘positive’ or ‘negative’). My cooperation with Sven Buechel,
however, lead to fine-grained analyses with a multi-dimensional model
(Hellrich et al., 2019a). JeSemE is the first interactive website for
accessing information on trends in both denotation and emotional
connotation derived from word embeddings. It provides access to five
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diachronic corpora in both German and English.
Finally, this thesis contains two case studies applying JeSemE to
questions of interest to the digital humanities. Their results are in
line with the scholarly expectations, indicating my approach to be
reasonable.

1.5. Outline

Chapter 2 introduces distributional semantics in general and word
embeddings in particular as the background for the experiments
described in Chapters 4 and 5. Distributional judgments on word
similarity match human intuition (Rubenstein & Goodenough,
1965), making them useful for further studies. Three popular word
embedding methods, i.e., GloVe (Pennington et al., 2014), SGNS
(Mikolov et al., 2013a,b) and SVDPPMI (Levy et al., 2015), are
discussed in detail. Chapter 2 also contains an overview of the
history of distributional methods and their recent application to
track lexical change.

Chapter 3 introduces several diachronic corpora which were used
for the experiments in Chapters 4 and 5. It describes the composi-
tion of these corpora as well as peculiarities that might affect the
interpretation of results in Chapter 5. This is especially important
for the Google Books Ngram corpus (Lin et al., 2012; Michel et al.,
2011), as its composition is opaque and seems to be unstable
(Pechenick et al., 2015).

Chapter 4 investigates the (lack of) reliability of several word em-
bedding algorithms introduced in Chapter 2. It describes a series
of experiments focused on the SGNS algorithm and the effect of
different sampling strategies applied during the training phase of
word embeddings. It also contains a theoretical description of the
source and possible consequences of the lack of reliability as well
as a discussion of the—albeit scarce—related work.

Chapter 5 is concerned with the application of word embeddings
in the digital humanities and linguistics. It contains experiments
on using word embeddings to create a fine-grained model of past
emotional connotation. Chapter 5 also introduces JeSemE, a
website allowing non-technical users to profit from state-of-the-art
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distributional semantics methods while avoiding reliability prob-
lems. This chapter also contains two case studies on applying
JeSemE to investigate the history of electricity and the meaning
of words connected to the period of Romanticism.

Chapter 6 summarizes the other chapters and provides general
recommendations on best practices, possible applications and ideas
for future research.





Chapter 2

Word Distribution and Meaning

Observing the frequency of words and word combinations to infer a
word’s meaning is an old idea at the heart of several state-of-the-art
solutions in computational linguistics. It is intuitively appealing,
since humans are able to learn the meaning of words from examples—
in the most extreme case two persons can acquire a shared vocabulary
without having any shared language, as in the following thought
experiment (Wiener, 1955, p. 183):

“Suppose I find myself in the woods with an intelligent savage, who
cannot speak my language, and whose language I cannot speak. [...]
[A] signal without an intrinsic content may acquire meaning in his
mind by what he observes at the time, and may acquire meaning in
my mind by what I observe at the time.”

Language internal contexts, such as adjacent words,1 can also be used
to determine the meaning of a word, a concept known as distributional
semantics (Harris, 1954; Rubenstein & Goodenough, 1965; Turney &
Pantel, 2010) and succinctly described by the frequently cited “You
shall know a word by the company it keeps!” (Firth, 1968, p. 11).
Contextual information can be used to determine whether two words
are especially likely to co-occur with each other and also whether they
are similar—from a linguistic point of view, these are questions of
syntagmatic and paradigmatic relations (Schütze & Pedersen, 1993).
This corresponds to a structuralist line of linguistic theory described
by Harris (1954, p. 157):

“If A and B have some environments in common and some not (e.g.
oculist and lawyer) we say that they have different meanings, the
amount of meaning difference corresponding roughly to the amount
of difference in their environments.”

1 Thus in this case a word’s context is equal to its co-text.

9
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A similar idea was expressed in the following sketch of a disambigua-
tion algorithm by Weaver (1955, pp. 20–21):

“If one examines the words in a book, one at a time as through an
opaque mask with a hole in it one word wide, then it is obviously
impossible to determine, one at a time, the meaning of the words. [...]
But if one lengthens the slit in the opaque mask, until one can see not
only the central word in question but also say N words on either side,
then, if N is large enough one can unambiguously decide the meaning
of the central word.”

Progress in the fields of information theory2 (Fano, 1966; Shannon,
1948) and information retrieval3 (Deerwester et al., 1990; Salton,
1971) lead to modern algorithms for determining the meaning of
words, especially the ways in which they are similar to each other.
Distributional semantics are attractive for historical linguistic re-
search, since text corpora are the main source for past language.
In addition to diachronic applications, distributional methods can
also be used to investigate other linguistic questions, e.g., language
acquisition (Landauer & Dumais, 1997), regional variation (Hovy &
Purschke, 2018; Kulkarni et al., 2016), changes affecting loan words
(Takamura et al., 2017), or social biases reflected in language use
(Bolukbasi et al., 2016a,b; Caliskan et al., 2017). They might also
be useful for the digital humanities in general, e.g., Jo (2016) applied
them to study diplomatic documents.
The following Section 2.1 describes different types of contexts, e.g.,
nearby words, and nuances involved in sampling texts. It also intro-
duces the word context matrix which is instrumental to several
methods in later Sections. Section 2.2 defines similarity and presents
general methods for modeling word meaning. Section 2.3 introduces
vector representation for word meaning, describes three popular word
embedding algorithms in detail and provides a short overview of the
history of these methods. Section 2.4 is concerned with the evalu-
ation of methods for determining word similarity. Finally, Section
2.5 provides an overview of diachronic applications of distributional
methods. Both overviews of distributional methods are impeded by

2 Information theory was developed to provide mathematical underpinnings
for signal processing and is related to statistics and stochastics.

3 Information retrieval is mainly concerned with finding documents matching
a user query, a widely used modern example are search engines, such as Google
or Bing.
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the relatively long research history of this currently very active field.4

Examples for early applications or theoretical underpinnings are thus
only intended to show the minimum age of individual approaches—a
complete study of the history of applied distributional methods would
involve archival research and probably constitute a thesis in itself.

2.1. Sampling Contexts

Contextual information for a word can be determined by a wide vari-
ety of approaches, e.g., the documents a word occurred in, grammat-
ically dependent words, or co-occurring words (see e.g., Rubenstein
& Goodenough (1965), Deerwester et al. (1990), Levy & Goldberg
(2014a)). Words co-occurring in a small window (recall Weaver’s
algorithm sketch on page 10) were found to be an overall good choice
for modeling lexical semantics (Levy et al., 2015; Mikolov et al.,
2013b; Pennington et al., 2014) and are thus described here.
Examples in the remainder of this chapter are based on the following
three sentence corpus:

Somebody buys a novel.
Somebody buys a book.

Somebody purchases a book.

Figure 2.1 shows a context window being moved over the first sentence
of the example corpus (converted to lower case), sampling one co-
occurring word to each side of the current word.

�� ��somebody buys a novel�� ��somebody buys a novel

somebody
�� ��buys a novel

somebody buys
�� ��a novel

Figure 2.1: Visualization of a symmetrical one-word context window
being moved over a sentence; current center words in bold.

4 The most popular family of algorithms, i.e., word2vec, was cited over twenty
three thousand times in the last six years. Checked for Mikolov et al. (2013a)
and Mikolov et al. (2013b) on May 28th 2019 via https://scholar.google.com/

citations?user=oBu8kMMAAAAJ

https://scholar.google.com/citations?user=oBu8kMMAAAAJ
https://scholar.google.com/citations?user=oBu8kMMAAAAJ
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Window-based approaches necessitate the choice of window size (e.g.,
one in the above example) and a decision on symmetry—are words to
both sides processed in the same way (symmetrical, as in the above
example) or not (asymmetry). Another choice is using a bag-of-
words approach and treat all contexts the same independently of their
position or, alternatively, encoding positional information. Current
research favors symmetric windows (Bullinaria & Levy, 2012) and a
bag-of-words approach over the alternatives explored before (e.g., by
Schütze (1993)). Recommended window sizes commonly vary from
2 to 5 (see e.g., Levy et al. (2015)). A now discarded alternative to
these artificial windows are naturally defined windows, e.g., counting
co-occurrences in document titles as in Lewis et al. (1967), documents
as in Doyle (1961) or sentences as in Rubenstein & Goodenough
(1965).
While some of the currently most popular methods operate in a
streaming fashion and process one word context combination at a
time, many utilize a word context matrix, M , which stores the
connections between the i-th word and the j-th context in Mi,j. The
word context matrix shown in Table 2.1 lists all words in the corpus
presented on page 11 as processed with the method illustrated in
Figure 2.1.
Contexts are often subjected to minimum frequency thresholds, e.g.,
only modeling co-occurrences with words that appeared at least 100
times. This kind of filtering is globally applied for all combinations
of each context with any word. Another kind of filtering is locally
applied only to some word context combinations, e.g., keeping only

a book buys novel purchases somebody

a 0 2 2 1 1 0
book 2 0 0 0 0 0
buys 2 0 0 0 0 2
novel 1 0 0 0 0 0

purchases 1 0 0 0 0 1
somebody 0 0 2 0 1 0

Table 2.1: Direct co-occurrence counts for words in the example
corpus.
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the 10 most frequent contexts for each word. Filtering can reduce
noise as well as memory requirements (see page 21).
Another common modification of co-occurrence values applies some
kind of downsampling (Levy et al., 2015; Mikolov et al., 2013b; Pen-
nington et al., 2014). Downsampling can be used to reduce the impact
of high frequency words (probably stop of function words) which
would otherwise dominate the overall modeling efforts, a process
called ‘subsampling’ in Levy et al. (2015).5 Downsampling can also
be used to reduce the impact of words that are relatively far from
a modeled word (and thus assumed to be less relevant), a process
called ‘dynamic context window’ in Levy et al. (2015). Both types of
downsampling were shown to affect performance, with downsampling
of high frequency words being especially helpful (Levy et al., 2015;
Mikolov et al., 2013b)—see also Section 4.6.
Downsampling can be implemented as a probabilistic process or via
weighting. In the former case co-occurrences are sampled with some
probability, e.g., according to the distance between co-occurring words.
In the latter case all co-occurrences are processed, but their impact,
e.g., on counts in a word context matrix, is lowered by multiplication
with a weight. Probabilistic approaches can be beneficial from a
computational point of view, since only sampled instances need to be
processed further in streaming algorithms. However, they contribute
to the reliability problems described in Chapter 4. Details on down-
sampling procedures are given with each algorithm’s description in
Sections 2.3.2–2.3.4.

2.2. Word Association and Similarity

Early research did often not distinguish between association and sim-
ilarity, or subsumed one under the other (Giuliano, 1963). Following
Jurafsky & Martin (2009, ch. 20.7), association will here refer to syn-
tagmatic patterns in the co-occurrence of a word with contexts. These
co-occurrence patterns can be tracked either based on frequency, e.g.,
noun and articles will co-occur frequently, or based on expected and
observed probabilities, e.g., delicious will likely co-occur with the
names of dishes. Association is thus not to be understood in the
sense of de Saussure’s “rapports associatifs”, which are decidedly

5Levy et al. (2015) also use ‘context distribution smoothing’ for a globally
applied procedure with a similar goal.
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non-syntagmatic and correspond to questions of similarity (Wunderli,
2013, pp. 262–263).
From a distributional point of view, words are similar if they share
patterns in their associated contexts. They are thus paradigmatically
related (see e.g. Landauer & Dumais (1997) or Bullinaria & Levy
(2007)). Such distributional similarity has no direct connection to
the outside world or classical linguistic semantics and might seem
to be of limited use for investigating language change or (compu-
tational) linguistic applications in general. However, Rubenstein &
Goodenough (1965) showed distributional similarity to be correlated
with human similarity judgments, allowing for both applications (see
especially Chapter 5) and evaluation (see Section 2.4).

2.2.1. Word Association Measures

Word association measures allow large corpora to be screened for typ-
ical examples of a word’s usage or automatically identify multi-word
expressions, e.g., the compound Cold War.6 The former application
is popular in corpus-based linguistic research in general (Biber et al.,
2000; Curzan, 2009), while the latter can be used to create and cu-
rate terminological resources or templates for automatic text creation
(e.g., Evert & Krenn (2001), Wermter & Hahn (2004), Smadja &
McKeown (1990)). Early research on word association was motivated
by the challenge of organizing large document collections and finding
patterns for indexing or refining user queries about such collections
(Doyle, 1961; Maron & Kuhns, 1960; Stiles, 1961).
Using an association measure to describe word combinations is quali-
tatively different from using the most frequent adjacent words as it is
less likely to be affected by function words (Jurafsky & Martin, 2009,
p. 695). There exists a wide range of word association measures, see
e.g., Evert (2005) for an overview. Probably the most established
word association measure is Pointwise Mutual Information (PMI),
which was introduced by Fano (1966)7 and popularized for word

6 Highly associated after World War Two, but not before; see ‘Typical Context’
results for the JeSemE system described in Section 5.2: http://jeseme.org/

search?word=cold&corpus=coha [Accessed May 28th 2019].
7 Fano used the name ‘mutual information’, which nowadays refers to a more

general measure which would describe the expected association for a randomly
picked pair of words, i.e., something akin to text coherence or repetitiveness. See
also Jurafsky & Martin (2009, p. 696).

http://jeseme.org/search?word=cold&corpus=coha
http://jeseme.org/search?word=cold&corpus=coha
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association by Church & Hanks (1990). A variant that characterized
words by the information provided by all their co-occurrences had
already been employed earlier by Spiegel & Bennett (1965, p. 54).
PMI is the logarithmized ratio of the observed co-occurrences between
a word and a context (word) to the co-occurrences expected based on
the independent occurrences of both. It can be calculated based on
count-derived probabilities8 for encountering the word i and context
j alone, i.e., P (i) and P (j), and together, i.e., P (i, j):

PMI(i, j) := log
P (i, j)

P (i)P (j)
(2.1)

Using PMI(buys , somebody) and PMI(buys , a) as examples, the
relevant probabilities according to Table 2.1 are:9

P (a) =
6

18
=

1

3

P (somebody) =
3

18
=

1

6

P (buys) =
4

18
=

2

9

P (buys , somebody) =
2

18
=

1

9

P (buys , a) =
2

18
=

1

9

P (buys)P (a) =
2

9
× 1

3
=

2

27

P (buys)P (somebody) =
2

9
× 1

6
=

1

27

8 For a Vocabulary V the probability of encountering a word x ∈ V is
calculated with the help of a function c(x), which provides the number of
times a word x appeared in the corpus, and the following formula: P (x) =
c(x)/

∑
v∈V c(v). Note that this example did not distinguish between words and

context words, as it is applied to symmetrical data.
9 Probabilities derived directly from the example sentences would differ as the

process of moving a context window over the text inflates and distorts counts.
For example, each of the three sentences contains an a and three other words,
thus P (a) = 1/4 when derived directly from the corpus.
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Assuming base 2 for the logarithm10 the resulting PMI values are:

PMI(buys , somebody) = log(
1/9

1/27
) = log(3) ≈ 0.48

PMI(buys , a) = log(
1/9

2/27
) = log(1.5) ≈ 0.18

According to these PMI values buy is more strongly associated with
somebody than with a. While both co-occurrences are equally fre-
quent, a co-occurs with a greater number of different words and is
thus less specific.
Pearson’s χ2 which is also used as a statistical test for the association
between categorical variables (e.g., parts of speech), is a robust alter-
native to PMI (Manning & Schütze, 1999, ch. 5). An early linguistic
application was provided by Stiles (1961) identifying synonyms and
other closely related words among terms used for indexing with a
variant of χ2. The χ2 association11 between a word i and a context j
is also calculated with count-derived probabilities:

χ2(i, j) :=
(P (i, j)− P (i)P (j))2

P (i)P (j)
(2.2)

χ2 again indicates buys to be more associated with somebody than
with a:

χ2(buys , somebody) =
(1/9− 1/27)2

1/27
≈ 0.15

χ2(buys , a) =
(1/9− 2/27)2

2/27
≈ 0.02

Positive Pointwise Mutual Information (PPMI) is a variant of PMI
independently developed by Niwa & Nitta (1994) and Bullinaria &
Levy (2007). It provides only positive values which indicate words to
co-occur more often than expected by chance:

PPMI(i, j) :=

{
0 if P (i,j)

P (i)P (j)
< 1

log( P (i,j)
P (i)P (j)

) otherwise
(2.3)

10 The choice of base is irrelevant for comparisons between different words.
11 All of these χ2(i, j) values would be combined for a χ2 test.
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This achieves not only better results but is also mathematically bene-
ficial, since PMI itself is not defined for word combinations that never
occurred as it would require calculating log(0).
Note that PPMI(i, j) = 0 for words that never co-occurred, while
χ2(i, j) 6= 0 for nearly all word combinations. This is problematic,
as it leads to increased memory consumption, despite both measures
having an asymptotic space complexity of O(n2) for a vocabulary of
size n. However, in practice matrices for PPMI contain about 99%
zeroes which can be utilized to save memory through sparse matrix
formats (see discussion on page 21). Later experiments in this thesis
use a sparse version of Equation 2.2:

χ2(i, j) :=

{
0 if P (i, j) = 0
(P (i,j)−P (i)P (j))2

P (i)P (j)
otherwise

(2.4)

Word association measures are evaluated by their ability to solve a
task, e.g., identifying collocations. This can be done both by manually
inspecting the most associated words and also by comparison with a
gold standard. The latter requires a higher initial time investment,
yet allows for cheap future evaluations and the calculation of recall
scores, i.e., measuring missed potential matches (Evert & Krenn,
2001).

2.2.2. Word Similarity

Some researchers distinguish between two types of similarity, here-
inafter referred to as ‘strict similarity’ and ‘relatedness’ (Hill et al.,
2014). Strict similarity assumes that the referents of words share
attributes, e.g., dog is similar to wolf since both animals share much
of their behavior and anatomy. Words with enough overlap are syn-
onyms and can be used interchangeably, e.g., to buy and to purchase.
Meanwhile relatedness arises from words being used in similar com-
municative situations, e.g., dog being similar to cat and even kibble
due to people writing or talking about pets.
An alternative definition for strict similarity and relatedness is sub-
suming the former under the latter, with similar words being con-
nected through “hyponymy (hypernymy), antonymy, or troponymy”
(Mohammad, 2008, p. 3) while related words can be connected through
any kind of semantic relationship, e.g., meronymy or both being
positive adjectives (Mohammad, 2008, p. 2).
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Both definitions suffer from the ontological problem of nearly all
words being connected by trivial attributes like ‘exists’, respectively
trivial hypernyms like ‘thing’ or ‘action’. The attribute based defini-
tion can also be argued to be not well defined inside linguistics, since
it depends on world knowledge.
The experiments described in Chapter 5 operate on a relatedness
based definition, both due to most data sets and methods being
intended for it and due to an assumed fit between its somewhat fuzzy
nature and observing semantic change. They thus use co-occurrence
derived contexts instead of syntactical ones, the latter being known
to favor strict similarity (see e.g., Turney & Pantel (2010), Levy &
Goldberg (2014a)).
Early research in word similarity measures was motivated by the chal-
lenge of managing large document collections (Giuliano, 1965; Lewis
et al., 1967). One notable exception from this applied research is
Rubenstein & Goodenough (1965) testing the linguistic distributional
hypothesis by comparing a corpus based word similarity measure with
human judgments.
A still common use case for word similarity measures is the construc-
tion of so called distributional thesauri (Ferret, 2017; Grefenstette,
1994; Salton & Lesk, 1971). These thesauri can serve as a resource in
technical applications, especially so in information retrieval (Salton &
Lesk, 1971). They enable systems to find not only verbatim matches,
but also matches based on synonymy or hypernymy, e.g., documents
containing car for a query concerned with vehicle. This information
retrieval driven research led to the vector space model described in
the next section.
Current methods do typically not use straight co-occurrence frequency
to model similarity, but rely on some form of association measure
(see Section 2.2.1) calculated in a separate step (Bordag, 2008). This
measure can then be used in place of frequencies for calculating a
similarity score (Lin, 1998) or as a filtering criterion (see discussion
on page 21).
While most of the filtering approaches fall under the vector space
concept and are thus described in the next section, some operate
on a notion of sets, i.e., use only the information that two words
were associated, but not to what degree (as long as it exceeds a
minimum). The earliest example is Rubenstein & Goodenough (1965)
who quantified the similarity of two words as the normalized number
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of contexts both co-occurred with. A recent example is Riedl &
Biemann (2013) representing words with sets containing their most
associated grammatically dependent contexts.

2.3. Words as Vectors

The vector space model is now widely used for both distributional
semantics and information retrieval (Salton et al., 1975; Turney &
Pantel, 2010). It represents words with coordinates, allowing for
comparisons between words through their positions. Such a geometric
approach was already described for document indexing by Maron &
Kuhns (1960, pp. 224–225):

“The points in this space are not located at random, but rather, they
have definite relationships with respect to one another, depending on
the meanings of the terms. For example, the term ‘logic’ would be
much closer to ‘mathematics’ than to ‘music’.”

In the simplest case each dimension or axis represents one context
(e.g., a or somebody) and the coordinate on this axis represents the
frequency or association with this context. Figure 2.2 shows the
positions of book, buys and purchases in such a vector space (according
to counts in Table 2.1). All vectors start from the origin and only
axes for co-occurrences with a and somebody are shown.

1 2

1

2

book

buys

purchases

co-oc. with a

co
-o

c.
w

it
h

so
m

eb
od

y

Figure 2.2: Positions of book, buys and purchases in a vector space
with axes for co-occurences according to Table 2.1.
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1 2
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book buys

purchases

co-oc. with somebody
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it
h

a

Figure 2.3: Rotation of the vector space from Figure 2.2.

Note that there is no inherent connection between a specific axis and
the context it is used to track, i.e., data can be rotated by switching
axes while preserving relative positions, as shown in Figure 2.3.
Word embeddings use fewer dimensions to represent each word in
a vector space than contexts exist.12 For example, Table 2.1 can be
argued to contain several redundant entries. The words book and
novel, respectively buys and purchases, are identically distributed,
i.e., the columns describing their context words are identical.
Both these identical distributions, as well as linguistic intuition—
buys and purchases are synonyms, whereas book is the hypernym
of novel—make it plausible to merge these columns, resulting in
Table 2.2. This manual approach towards dimensionality reduction
results in interpretable dimensions, e.g., buys & purchases, whereas
the algorithms described in the following sections produce opaque
dimensions.
Word embeddings are not the only options to achieve more memory
efficient representations. Set approaches (see page 18) or aggressive
filtering (reducing most contexts to zero) can lead to very similar

12 In principle every representation of a word in vector space could be called
a word embedding, but the term is strongly associated with low dimensional
representations (Turian et al., 2010, p. 386).
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a book & novel buys & purchases somebody

a 0 2 2 0
book 1 0 0 0
buys 1 0 0 1
novel 1 0 0 0

purchases 1 0 0 1
somebody 0 0 2 0

Table 2.2: Co-occurrence counts for words in example corpus after
manual dimensionality reduction; based on Table 2.1.

decreases in space complexity given a proper data structure.13 Rep-
resentation of the top d individual contexts of a word (including set
representations), as well as word embeddings of dimensionality d for
a vocabulary of size n have a space complexity of O(n×d), whereas a
non-sparse word× context word matrix has a complexity of O(n×n)
and typically n� d.
In contrast to other approaches, word embeddings are opaque, i.e.,
their dimensions do not directly correspond to contexts in the under-
lying data. Such opaque dimensions can be argued to be acceptable
from a linguistic point of view, since at least synonymous context
words can be exchanged without a (major) loss of information. Due to
their usefulness in applications and high performance in judging word
similarity14 (see e.g., Levy et al. (2015) or Sahlgren & Lenci (2016)),
word embeddings are currently extremely popular in computational
linguistics, especially so the word2vec algorithms (Mikolov et al.,
2013a,b).

13 Suitable choices for non-word embedding approaches are associative data
structures (e.g., used by Gamallo & Bordag (2011)) as well as the sparse matrices
included in most numerical software (e.g., in Matlab, see Gilbert et al. (1992)).

14 The only recent reports of achieving superior performance with non-word
embedding were made by Gamallo et al., who argue against word embeddings due
to their opaqueness. They used the cosine (see below) between vectors containing
only the top grammatical contexts by association score (Gamallo, 2017; Gamallo
et al., 2018). Levy et al. (2015) provided good, but not quite state-of-the-art
results with a similar approach, where all association scores were decreased by a
constant factor, retaining only positive ones.
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Sections 2.3.2–2.3.4 introduce three popular algorithms for creat-
ing word embeddings. Some of these approaches operate on initial
high-dimensional representations, which are then transformed in a
dimensionality reduced representation, while others avoid any form
of high dimensional representation. These algorithms are also used
in later chapters as they are popular and perform well. Niche alter-
native approaches like random indexing (Kanerva et al., 2000) and
Hellinger-PCA (Lebret & Collobert, 2015) are thus out of scope. A
general overview of the history of vector representations for words is
given in Section 2.3.5.

2.3.1. Interpreting Vector Spaces

The relative positions of words in a vector space can be used for
comparisons as in the quote from Maron & Kuhns (1960) on page
19. This can be done by calculating some kind of distance between
words (see e.g., Bullinaria & Levy (2007)), as shown in Figure 2.4.
Euclidean distance d conforms to an intuitive concept of distance in
space and is calculated for two vectors a and b with n entries with:

d(a, b) :=

√∑n

i=1
(ai − bi)2 (2.5)

An alternative is using the angle θ between two vectors, also shown in
Figure 2.4. Empirical investigations overall show the angle, expressed
as the cosine, to be superior during evaluation tasks (Bullinaria &
Levy, 2007), but other measures might be beneficial for specific tasks
or word frequency bands (Weeds et al., 2004).
The cosine typically ranges between 0 for complete dis-similarity and
1 for complete similarity.15 As an angular measurement the cosine is
only concerned with vector direction and not with vector magnitude.
Cosine similarity is calculated for two vectors a and b with:

cos(a, b) :=
a · b
‖a‖‖b‖

(2.6)

a · b calculates a vector dot product between a and b, i.e., the sum of
the products of all corresponding n components:

a · b :=
∑n

i=1
aibi (2.7)

15 Its complete range is from −1 to 1. Negative values do not correspond
to linguistic antonymy. In fact, distributional models tend to rate antonyms as
rather similar and seldom provide negative cosine values.
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The magnitude of a vector x of length n is defined as:

‖x‖ :=

√∑n

i=1
x2i (2.8)

For example, the cosine between buys and purchases represented
by vectors b and p (for buys and purchases, respectively) can be
calculated for Table 2.1 with:

b = [2 0 0 0 0 2]

p = [1 0 0 0 0 1]

cos(b, p) =
[2 0 0 0 0 2] · [1 0 0 0 0 1]

‖[2 0 0 0 0 2]‖ ‖[1 0 0 0 0 1]‖

=
4√
8
√

2

= 1

The empirical superiority of the cosine might be due to its resilience
against variations in absolute word frequency (due to the division by
the magnitudes), relying on relative frequencies instead. As high-
lighted in Figure 2.4, purchases has the same distance to buys and
book, but widely different angles (the 0◦ angle between purchases and
buys not being visible). Only the latter reflects buys occurring with
the same words as purchases.
Operations in vector space can not only be used to measure word
similarity, but also to solve analogy tasks (Mikolov et al., 2013a),
e.g., which word relates to king as woman does to man. Assume four
word embeddings a, b, c, d (all elements of a vocabulary V ) where a
(e.g., man) and b (e.g., woman) are to each other as c (e.g., king) is
to an unknown d. Mikolov et al. (2013a) identified d by maximizing
the following Equation:

arg max
d∈V

(cos(d, c− a+ b)) (2.9)

Equation 2.9 can be rewritten as (Levy & Goldberg, 2014b):

arg max
d∈V

(cos(d, c)− cos(d, a) + cos(d, b)) (2.10)

Intuitively, Equation 2.9 describes a movement from c towards b
(which share some property with d) and away from a (which is lacking
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Figure 2.4: Comparisson of purchases to book and buys by distance,
as well as book by angle; based on Figure 2.2.

this property). This corresponds, as highlighted in Equation 2.10, to
searching for a d close to c and b, but far from a.
Levy & Goldberg (2014b) found results of this additive approach
to be strongly influenced by the largest difference between terms.
They achieved a better balance between large and small differences
by effectively “taking the logarithm of each term before summation”
(Levy & Goldberg, 2014b, p. 175). This multiplicative approach also
necessitates the addition of a small ε to prevent division by zero:

arg max
d∈V

(
cos(d, c) cos(d, b)

cos(d, a) + ε
) (2.11)

The ability to solve analogies can be used to evaluate algorithms or
parameter choices. Mikolov et al. (2013c) created a test set with 8,000
morpho-syntactic analogy questions (e.g., year is to years as law is to
? ) at Microsoft Research.16 Mikolov et al. (2013a) also created a test
set with 19,544 questions of which about half are morhpo-syntactic
(e.g., think is to thinking as read is to ? ) and half are semantic17

(e.g., Athens is to Greece as Oslo is to ? ) at Google.

16 The provenance is given, as both test sets are often referenced by it, e.g.,
‘MSR’ and ‘Google’ in Levy & Goldberg (2014b).

17 This example can be argued to test encyclopedic knowlegde from a linguistic
point of view.
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There is a fundamental difference between vector representations of
words and thesauri—the former are bound by geometrical constraints,
while the latter are not. Thus for three words w1, w2 and w3 the
two similarity values sim1(w1, w2) and sim2(w2, w3) would constrain
the possible value of sim3(w1, w3) in vector space, like two sides of
a triangle constrain the third. This is not the case for a thesaurus,
which can be modeled as a graph with weighted edges, allowing for
arbitrary similarity values between w1, w2 and w3.

2.3.2. SVDPPMI Word Embeddings

Singular Value Decomposition (SVD) can be used to automatically
decrease the dimensionality of a word context matrix and thus create
word embeddings. The state-of-the-art method for creating word em-
beddings with SVD operates on a word context matrix pre-processed
to contain Positive Pointwise Mutual Information (SVDPPMI; Levy
et al. (2015)).
In general, SVD represents a matrix M as the product of three special
matrices (Berry, 1992; Saad, 2003):

M = UΣV T (2.12)

Here U and V are orthogonal matrices containing so called singular
vectors. Σ is a diagonal matrix containing singular values.18 For a
matrix M of rank r all diagonal entries σi > 0 for 1 ≤ i ≤ r and σi = 0
for i > r. The singular values are typically sorted in decreasing order,
i.e., σi ≥ σi+1.

19 The size of each singular value σi can be interpreted
as the importance of the corresponding vectors in U and V .
Table 2.1 can be expressed with the following matrices, rounding
everything to two significant digits for readability:20

18 Singular values are frequently called eigenvalues in literature, e.g., in Levy
et al. (2015). This is due to the Eigendecomposition procedure, which is roughly
speaking a variant of SVD suitable only for square matrices.

19 At least in the case of the LAS2 algorithm by Berry (1992) used in Levy
et al. (2015); other orders would require all matrices to be rearranged for further
processing.

20 Calculated with the SVD implementation of NumPy [Accessed May 28th

2019]: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/

numpy.linalg.svd.html

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.svd.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.svd.html
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U ∼=


0.85 0 0.53 0 0 0

0 −0.37 0 −0.60 0.38 0.60
0 −0.6 0 0.37 0.60 −0.38
0 −0.37 0 −0.60 −0.38 −0.60
0 −0.60 0 0.37 −0.60 0.37

0.53 0 −0.85 0 0 0



Σ ∼=


2.29 0 0 0 0 0

0 2.29 0 0 0 0
0 0 0.87 0 0 0
0 0 0 0.87 0 0
0 0 0 0 0 0
0 0 0 0 0 0



V T ∼=


0 0.37 0.60 0.37 0.60 0

−0.85 0 0 0 0 −0.53
0 0.60 −0.37 0.60 −0.37 0

−0.53 0 0 0 0 0.85
0 −0.11 0.70 0.11 −0.70 0
0 0.70 0.11 −0.70 −0.11 0



UΣV T ∼=


0.00 1.00 1.00 1.00 1.00 0.00
1.00 0.00 0.00 0.00 0.00 0.01
1.00 0.00 0.00 0.00 0.00 1.00
1.00 0.00 0.00 0.00 0.00 0.01
1.00 0.00 0.00 0.00 0.00 1.00

0 0.01 1.00 0.01 1.00 0.00


Dimensionality reduction can be achieved by using only the top d
entries of Σ and the corresponding singular vectors in Ud and Vd.
The result of this so called economical SVD is a matrix Md which is
similar, but not identical, to M :

Md = UdΣdV
T
d (2.13)
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For example, using only 3 dimensions and rounding to two significant
digits results in M3 as an imperfect reconstruction of Table 2.1:

U3
∼=


0.85 0 0.53

0 −0.37 0
0 −0.60 0
0 −0.37 0
0 −0.60 0

0.53 0 −0.85



Σ3
∼=

2.29 0 0
0 2.29 0
0 0 0.87



V T
3
∼=

 0 0.37 0.60 0.37 0.60 0
−0.85 0 0 0 0 −0.53

0 0.60 −0.37 0.60 −0.37 0



M3 = U3Σ3V
T
3
∼=


0.00 1.00 1.00 1.00 0.1.00 0.00
0.72 0.00 0.00 0.00 0.00 0.45
1.17 0.00 0.00 0.00 0.00 0.73
0.73 0.00 0.00 0.00 0.00 0.45
1.17 0.00 0.00 0.00 0.00 0.73
0.00 0.01 1.00 0.01 1.00 0.00


SVDPPMI applies economical SVD to a matrix of PPMI values (see
Equation 2.3). The vectors in Ud are then used as word representa-
tions and those in Vd as context word representations. In contrast
to older SVD based word embedding approaches (e.g., Bullinaria &
Levy (2007)), Σ is only used for dimensionality reduction and not
used to scale U .
Co-occurrence counts in SVDPPMI are downsampled both by distance
between word and context word and by word frequency. The distance
between two tokens wi and wj (the latter here serving as context
for modeling the former) can be calculated for a sequence of tokens
. . . , wi−2, wi−1, wi, wi+1, wi+2, . . . with:

d(wi, wj) := |j − i| (2.14)
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Downsampling by distance is performed by applying a window factor
wfSVD to each individual co-occurrence for a window of size s:

wfSVD(wi, wj) :=
s+ 1− d(wi, wj)

s
(2.15)

Word frequency is downsampled with two strategies, one applied to
all words and one only to high frequency ones. All contexts are
downsampled during PMI calculation by modifying P (j) in Equation
2.1 and raising the counts (provided by c(v)) by α (typically α =
0.75):

P (j) :=
c(j)α∑V
v=1 c(v)α

Especially frequent words are further downsampled with a frequency
factor ffSVD based on a threshold t (typically t = 10−5 or 10−4) and
each word’s relative frequency provided by r(w):

ffSVD(w) :=

{√
t/r(w) if r(w) > t

1 otherwise
(2.16)

Frequency downsampling for the co-occurrences of two tokens wi
and wj is given by the product of their frequency factors, i.e., co-
occurrences are treated as independent events:

ffSVD(wi, wj) := ffSVD(wi) ffSVD(wj)

Levy et al. defined the downsampling factors wfSVD and ffSVD as
optional and probabilistic, i.e., as a chance to sample a co-occurrence.
Experiments in Section 4.6 showed a novel variant using weighting-
based sub-sampling, i.e., using wfSVD and ffSVD as weights while
populating M , to be perfectly reliable without sacrificing accuracy—
we coined this variant SVDwPPMI (SVD based on a PPMI matrix
populated via weighting).
SVD always provides the same matrix decomposition for a given input
as long as no probabilistic downsampling is performed. This is so de-
spite a random vector being used as a kind of anchor during the SVD
calculation (Saad, 2003, chs. 6.3 & 7.1). An exception is stochastic
SVD (Halko et al., 2011) which generates non-identical embeddings
during repeated calculation (Antoniak & Mimno, 2018). Stochastic
SVD is beneficial for processing streamed input as it requires only
a single pass over the data and can be adapted not to require the
pre-computation of a co-occurrence matrix.
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2.3.3. Skip-gram Word Embeddings

Skip-gram (SG) word embeddings (Mikolov et al., 2013a,b) were shown
to be superior to older SVD approaches on a wide variety of tasks
(Baroni et al., 2014). They are not derived from a co-occurrence
matrix through dimension reduction, but are initialized with random
values and then tuned to predict likely context words given a word
in question. This is done with an artificial neural network (NN), a
machine learning method inspired by the interconnection of biological
neurons and currently very popular in the form of deep learning
(Goodfellow et al., 2016; LeCun et al., 2015). For both approaches,
contexts are downsampled with a probabilistic window and frequency
factor. In contrast to SVDPPMI, they process texts in a streaming
fashion and do not require the creation of a word context matrix.
Typical NNs consist of neurons arranged into one input layer, an
arbitrary number of so called hidden layers and one output layer.
The input of each neuron on one layer is determined by the output of
all neurons on the previous layer.21 Connections between these layers
are described by matrices as well as (non-linear) activation functions.
Mikolov et al. (2013a) introduced two architectures: Continuous Bag-
of-Words (CBOW) for predicting a center word given context words
and Skip-gram (SG) for predicting context words given a center word.
Both are also known as word2vec, the name of the tool providing
their reference implementations.22 In general, SG embeddings are
superior (see e.g., Levy et al. (2015)) and were thus used for most of
the experiments described in Chapter 4.
The architecture of a SG network has three layers and is illustrated
in Figure 2.5. It consists of an input layer lI with one neuron per
word in the vocabulary23 to allow for one-hot encoding, i.e., each
word is encoded by exactly one neuron being 1 and all others 0. For
example, a vocabulary of size V = 3 requires an input layer with
3 neurons and would encode words with the one hot row vectors
[1 0 0], [0 1 0] and [0 0 1]. The hidden layer lH has one neuron per
intended dimension d of the resulting embeddings. The output layer
lO is analogous to the input layer, again encoding each word in the

21 Some architectures allow for other types of links, e.g., skipping layers.
22 https://github.com/tmikolov/word2vec [Accessed May 28th 2019].
23 The following text assumes words and context words to be from the same

vocabulary, but formulas can easily be adjusted for differing vocabularies, e.g.,
due to syntactic contexts being used.

https://github.com/tmikolov/word2vec
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lI1 lI2 lI3 . . . lIV

lH1 lH2 lH3 . . . lHd

lO1 lO2 . . . lOV

Input Layer
one-hot word encoding

Hidden Layer

Output Layer
one-hot word encoding

Word Embedding Matrix W

Context Embedding Matrix C
followed by Softmax

Figure 2.5: Skip-gram embedding NN architecture.

vocabulary with a one hot vector. The connection between lI and lH

consist of a word embedding matrixWV×d applied without any further
function, i.e., lH = lIW , thereby selecting the word embedding for a
given input word. lH and lO are connected by a context embedding
matrix Cd×V and the softmax function, i.e., lO = softmax(lHC).
Softmax is commonly used for NN classification tasks (Goodfellow
et al., 2016, pp. 180–184) and is used here to reconstruct a one-hot
vector indicating a context word. It transforms arbitrary real valued
vectors to vectors representing probabilities, i.e., their components
(all between 0 and 1) sum up to 1. See Equation 2.18 for details.

During training actual and desired output of a neural network are
compared and the entries of their weight matrices updated with a
technique called backpropagation (see e.g., Goodfellow et al. (2016,
ch. 6.5)) to reduce aberrations, starting from the output layer and
propagating backwards to the input layer. This is done with a stochas-
tic gradient descent algorithm, i.e., vector entries are modified in such
a way that the overall error is minimized by following the slope of a
function (see e.g., Goodfellow et al. (2016, ch. 5.9)), as illustrated in
Figure 2.6. Stochastic gradient descent does not result in a global
minimum, but will find one of multiple local minima instead. Note
that the updates provided by the gradient descent algorithm are not
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Figure 2.6: Illustration of the influence of starting positions on the
selection of local minima (in red) during stochastic gradient descent.
Combined effect of all embedding dimensions shown as one axis.
Global maximum in purple.

applied fully, but multiplied with a factor known as learning rate (e.g.,
0.025, typically decreased during ongoing training) to moderate the
impact of each processed example.
The choice of a function for measuring such errors and guiding the
gradient descent, called a loss function, is another important choice
when designing a neural network. Following Mikolov et al. (2013b),
SG tries to minimize false predictions for the s words before and after
each word in a sequence of T words w1, w2, . . . wT :

errorSG := − 1

T

T∑
t=1

∑
−s≤j≤s, j 6=0

log p(wt+j|wt) (2.17)
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The conditional probability for encountering a context word c given
an input word w is defined with the following softmax function:

p(c|w) :=
exp(CT

∗,c ·Ww,∗)∑V
v=1 exp(CT

∗,v ·Ww,∗)
(2.18)

Here Ww,∗ refers to the row in W representing w, while C∗,c refers to
the column in C representing c and C∗,v to the vth column in C (used
to address vectors corresponding to all members of a vocabulary of
size V ).24 After training, Mikolov et al. use the rows of W as word
representations. It is possible, but without a clear benefit, to use
the sum of corresponding rows and columns in both matrices instead
(Levy et al., 2015), i.e., Wv,∗ + CT

∗,v for a word v.
This basic Skip-gram algorithm is very unpractical, since it requires
a comparison with all V words in the vocabulary due to the divisor
in Equation 2.18. Mikolov et al. (2013b) offer two solutions: Skip-
gram Hierarchical Softmax (SGHS) and Skip-gram Negative Sam-
pling (SGNS). SGHS uses a binary tree to reduce the number of
comparisons to log 2(V )− 1. Leaves (nodes without children) encode
words while inner nodes (with children) represent ways towards those.
Thus the task becomes one of learning the correct path through the
inner nodes that need to be passed from the root to the correct leaf
for a context word. In contrast, SGNS simply draws n random words
from the vocabulary,25 typically n = 5, and uses those instead of all V
vocabulary entries during softmax calculation. Both SGNS and SGHS
require more complex loss calculations (see Mikolov et al. (2013b)).
Downsampling factors for nearby words and high frequency words
in SGNS embeddings are defined as in SVDPPMI embeddings,26 thus
wfSGNS = wfSVD and ffSGNS = ffSVD. Mikolov et al. implemented both
factors probabilistically, i.e., words are sampled according to these
factors. Such probabilistic downsampling decreases training time as
embedding updates are only calculated for sampled word context

24 These connections between vectors and rows or columns are given by the
definitions of lH and lO and the way in which row vector matrix products work.
Some vectors are transposed due to the dot product definition.

25 The chance of drawing a word is set to its relative frequency modified by an
exponent α, typically α = 0.75.

26 However, Levy et al. (2015, pp. 214–215) found a deviation in word2vec’s
implementation of ff.
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combinations.27 Mikolov et al. provided an option not to downsample
high frequency words, but found it to decrease model quality (Mikolov
et al., 2013b). Levy et al. (2015) provided an implementation without
wfSGNS which they found to be of equal performance. Section 4.6
describes experiments with a novel variant of SGNS that processes
all examples and uses weighting-based downsampling, i.e., gradient
updates are multiplied with the appropriate wf and ff.

2.3.4. GloVe Word Embeddings

Another popular algorithm, GloVe (Global Vectors; Pennington
et al. (2014)), can be seen as somewhat of a hybrid between the
previous two approaches—a pre-computed co-occurrence matrix is
used as in SVDPPMI, but word vectors are randomly initialized and
tuned with stochastic gradient descent as in the word2vec algorithms.
Instead of piecemeal processing the input text as the word2vec algo-
rithms, the non-zero entries of the co-occurrence matrix are processed
in random order. GloVe is based on the idea that similar words
should have similar ratios between their co-occurrence frequencies
with other words (used explicitly) and their own frequency (captured
in bias terms in the final formula). Avoiding the non-linear activation
functions in NN was a design goal of GloVe (Pennington et al., 2014,
p. 1534).28

Its loss function is:

errorGloVe :=
V∑

i,j=1

f(Mi,j)(Wi,∗ · CT
∗,j + bi + b′j − log(Mi,j))

2 (2.19)

Wi,∗ and C∗,j are defined as for Skip-gram embeddings, i.e., rows and
columns of matrices for words and context words, respectively. V
is again the size of the vocabulary, while bi and b′j are bias terms
which serve to model the frequency of the (context) word in question.
Entries of Mi,j can be weighted by a function f(x), which provides a

27 For example, distance based downsampling reduces the number of processed
examples by 40% for a window of size 5. In general, only s+1

2s instead of 2s need
to be processed for a symmetric window of size s.

28 However, frequency weighting is non-linear, see Equation 2.3.4.
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mix of context distribution smoothing (recommended α = 0.75) and
subsampling of frequent words (recommended xmax = 100):29

f(x) :=

{
(x/xmax)

α if x < xmax

1 otherwise

Pennington et al. (2014) describe GloVe with word representations
composed by adding corresponding entries of both matrices, i.e., Wv,∗+
CT
∗,v for a word with index v in both. This results in something akin

to an ensemble model, but a later survey found no clear benefit over
using Wv,∗ alone (Levy et al., 2015). In contrast to SG no further
tuning is necessary to speed up training, since f(0) = 0, i.e., calcu-
lations are necessary only for those words that actually co-occurred
(Pennington et al., 2014, p. 1536). The overall performance of GloVe
in comparison with word2vec is disputed and likely lower (Levy et al.,
2015; Pennington et al., 2014).
Downsampling based on distance inside the context window is deter-
mined by the following window factor:

wfGloVe(wi, wj) :=
1

d(wi, wj)
(2.20)

Downsampling for GloVe is canonically implemented via weighting.

2.3.5. History and Research Trends

Despite their recent popularity, word embeddings are a surprisingly
old approach (see e.g., Sahlgren (2006), Turney & Pantel (2010),
Clark (2015)). The earliest proto-word vectors stem from psycholog-
ical research on word association (Osgood, 1952, 1953; Osgood et al.,
1957). Osgood et al. found patterns which were stable between dif-
ferent participants and could be interpreted as some kind of semantic
space. However, these representations are more connected with word
emotion lexicons (see Section 5.1) and their manual creation makes
them a non-distributional method.
Word vectors proper (and arguably also word embeddings) stem from
information retrieval research and the development of the vector space

29 Frequency downsampling in GloVe is thus based on the conditional
probability for two words co-occurring, whereas SVDPPMI and SG use the product
of two independent probabilities.
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model for documents (Salton et al., 1975; Turney & Pantel, 2010).
Giuliano & Jones (1962) (as well as Giuliano (1963,1965)) modeled
word similarity through indirect interconnections between entries of
a document term matrix30 and were able to create distributional
thesauri with an (analog) computer. Borko & Bernick (1963) cat-
egorized documents based on an eigenvalue decomposition of the
correlation between two document term matrices. They only used the
document vectors, but not the term vectors—the latter would have
been a form of word embeddings with documents serving as contexts.
Switzer (1965) proposed representing terms with vectors containing
their association with a limited set of terms. These were to be selected
for having a high variation in their association with other terms. This
is the earliest case of automatically derived low dimensional word31

representations as an explicit goal that I am aware of. Switzer can
thus be argued to be the inventor of word embeddings, but did not
provide any implementation.
Another candidate for the invention of word embeddings is Koll (1979)
who created a shared seven-dimensional vector space for documents
and terms through an iterative process. Seven documents without any
thematic overlap were used as anchors, each spanning one dimension.
Words were then positioned based on their appearance in the initial
documents, further documents based on the existing words and finally
all words based on the now complete document collection.
Later, Deerwester et al. (1990) used SVD to reduce the dimensionality
of a document term matrix—a method they called Latent Semantic
Analysis (LSA)—and compared terms by calculating the cosine be-
tween their vector representations (Deerwester et al., 1990, pp. 398–
399). Schütze also used SVD and experimented with multiple types
of contexts, among those the now common options of a small window
of adjacent words on both sides, but with a position-aware approach
(Schütze, 1993; Schütze & Pedersen, 1993). He also identified all
word vectors in Ud to be of equal importance (Schütze, 1992a). This
was also discussed in multiple later studies (Bullinaria & Levy, 2012;
Österlund et al., 2015) and lead to the insight that word vectors

30 The document term matrix is closely related to the word context matrix and
very popular in information retrieval. It describes connections between documents
and terms assigned to them.

31 Assuming ‘word’ and ‘term’ to be interchangeable, as (frequent) words
occurring in a text are well-suited as index terms for it.
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should not be weighted by their singular values in Σd (Levy et al.,
2015). Schütze (1992b) also pioneered using sub-word derived embed-
dings by calculating the SVD between co-occurring character 4-grams
and using those to represent words—a sub-word approach is also used
in the recent fastText, a variant of word2vec with better support
for rare words (Bojanowski et al., 2017; Mikolov et al., 2018).
Niwa & Nitta (1994) did not use SVD, but invented the PPMI word
association metric and represented words with vectors of PPMI values
between them and a set of middle frequency words. Lund et al.
achieved memory efficient vector representations by discarding all
co-occurring words except the 200 words with the highest variance
for their co-occurrences with all investigated words (Lund & Burgess,
1996; Lund et al., 1995).
Current word embeddings are typically neural (Bojanowski et al.,
2017; Mikolov et al., 2013a,b) or at least explicitly inspired by neural
embeddings (Levy et al., 2015; Pennington et al., 2014).
The word2vec algorithms were developed by simplifying a recurrent
neural network, i.e., one with a hidden layer aware of the state it was
in while processing preceding input, for predicting a word in question
based on its context words (Mikolov et al., 2013a,c). Earlier neural
word embeddings were trained as parts of larger neural networks for
performing some external task, e.g., predicting the likelihood of text
segments or the part-of-speech of a word (see e.g., Bengio et al. (2003),
Turian et al. (2010), Socher et al. (2011), Collobert et al. (2011),
Al-Rfou et al. (2013)). More generally, they are based on research
on learning embeddings for arbitrary objects and their relations with
each other (Hinton, 1986).
Levy & Goldberg (2014c) showed that SGNS embeddings can be seen
as an approximation of SVD applied to a PMI matrix, which lead to
the transfer of several pre-processing and weighting options and the
creation of SVDPPMI (Levy et al., 2015).
Despite the widespread use of word embeddings, there are still many
open questions about the structure of the resulting vector space. As
mentioned before, Schütze (1992a) recognized that there are no most
important dimensions and performance is robust even when (some)
dimensions are removed. Mimno & Thompson (2017) showed SGNS
word embeddings, but not GloVe ones, to be constrained to a small
cone shaped portion of the embedding space and be oriented away
from context word vectors.
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The ability to compute analogies was tackled in several studies. Levy
& Goldberg (2014b) and Gábor et al. (2017) explained it by re-
framing analogies as measuring pairwise word similarity, whereas
Gittens et al. (2017) and Arora et al. (2016) provided explanations
based on information theory. Arora et al. (2016) could thus show
that the beneficial effect of dimensionality reduction—another un-
solved question—is due to noise reduction, an explanation already
suggested by Turney & Pantel (2010). They were also able to quantify
this noise reduction, which is a first step towards the calculation
of an optimal number of embedding dimensions—the number of di-
mensions is currently chosen based on rules of thumb, i.e., 200–300
dimensions for neural and 300–500 for SVD word embeddings (Levy
et al., 2015; Mikolov et al., 2013a; Pennington et al., 2014). Patel
& Bhattacharyya (2017) could show minimum dimensionality to be
linked with the maximum number of words with the same similarity
values before dimensionality reduction—dimensionality must be high
enough to ensure these words can be equidistant in embedding space
after dimensionality reduction.32

There are also efforts to improve embedding quality by adding simi-
larity information from manually curated resources (such as Word-
Net; Miller (1995)) or combining multiple types of contexts (Faruqui
et al., 2015; Park & Myaeng, 2017). Automatically creating similarity
resources for enhancing word embeddings was suggested by Ferret
(2017), but it remains unclear how this differs from an ensemble
of different types of word embeddings (see e.g., Muromägi et al.
(2017)). An interesting way to avoid the problem of choosing the
right type of context(s) is performing dimensionality reduction on a
tensor33 containing different types of contexts at once. However, this
approach is limited by computational complexity (Baroni & Lenci,
2010). Simply representing all types of context in different columns
of a matrix is not equivalent, since information on interdependence is
lost.

32 While at least n − 1 dimensions are necessary for n equidistant points by
euclidean distance, e.g., two for a triangle, this relationship is far more complex
for cosine-similarity (Patel & Bhattacharyya, 2017, p. 33), making this approach
unusable in practice.

33 As a generalization of a matrix, a tensor of order n contains values addressed
via an n-tuple, e.g., as Tijk for a tensor T of order 3.
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Another main research direction is the treatment of ambiguous words—
should there be a specific embedding vector for each sense or can one
vector model all senses. A single representation for all senses can be
seen as problematic, since synonyms for all senses of an ambiguous
word will become close in vector space, e.g., pollen and refinery
become falsely similar due to their connection with the different senses
of plant (Neelakantan et al., 2014, pp. 1059–1060). Training sense
specific embeddings makes it necessary to automatically detect the
correct sense of each word (see e.g., Reisinger & Mooney (2010),
Neelakantan et al. (2014), Wang et al. (2015)). As in the case of more
sophisticated contexts, benefits seem to be very task specific and small
or nonexistent (Kober et al., 2017; Neelakantan et al., 2014). A major
challenge during disambiguation is deciding on the correct number
of senses for each word—most systems avoid this decision by using
the same number of senses for all words (see Biemann (2006) for a
counter example). So far, large performance improvements were only
shown for systems with a linguistically implausible fixed number of
senses (Lee & Chen, 2017; Neelakantan et al., 2014). In addition, very
recent work by Dubossarsky (2018, pp. 58–67) showed the beneficial
effect of sense specific embeddings to likely be an artifact. A similar
increase in performance could be achieved by randomly assigning
word senses, probably due to multiple embeddings working as some
kind of ensemble.
Finally, very recently a new line of research started to question the
reliability of word embedding algorithms and thus their suitability for
qualitative research. See Chapter 4 for details.

2.4. Evaluating Similarity

The performance of word similarity measurements can be judged
either intrinsically or extrinsically (see e.g., Schnabel et al. (2015)).
Intrinsic evaluation investigates how well predictions match human
judgments. In contrast, extrinsic evaluation tests how similarity judg-
ments (or the vector space model these are derived from) used as
features influence performance on some task. The predictive power of
intrinsic evaluation on extrinsic task performance seems to be limited,
making it good practice to perform both kinds of evaluation where
possible (Batchkarov et al., 2016).
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Human judgments for intrinsic evaluation are commonly collected
through questionnaires and averaged between multiple judges to form
re-usable data sets. Rubenstein & Goodenough (1965) were the
first to collect such a set of 65 English noun pairs, which was later
translated and re-annotated for German by Gurevych (2005), but
is no longer relevant due to its small size. Finkelstein et al. (2002)
developed WordSim-353, a still widely used test set with 353 English
noun pairs.34 While the data sets mentioned so far used manually
selected pairs, Radinsky et al. (2011) used 287 pairs of English words
with arbitrary parts-of-speech that co-occurred in the same newspa-
per articles to construct the MTurk35 data set. MTurk was annotated
through crowdsourcing, i.e., using an online platform to recruit paid
annotators. Bruni et al. (2012) also used crowdsourcing to annotate
3,000 word pairs for the MEN36 data set, pairs being sampled from
a large collection of volunteer provided image labels. MEN differs
from other data sets in judging word pairs against each other in-
stead of directly asking judges for the similarity of a single pair, e.g.,
prompting them to decide if parrot and pelican are more or less similar
than automobile and car. These data sets used relatedness oriented
instructions (see page 17), however SimLex-999 by Hill et al. (2014)
was annotated for strict similarity. It was created with crowdsourcing
and covers 999 English word pairs with identical part-of-speech.
Gurevych et al. created several data sets37 for German (Gurevych,
2005; Zesch & Gurevych, 2006). The largest thereof is Gur350 with
350 word pairs across different parts-of-speech, e.g., comparing Afrika
‘Africa’ with historisch ‘historical’.
A less direct and psycholinguistically interesting way to gather word
similarity judgments is measuring the influence of word pairs on
reaction time in lexical priming studies, semantically related words
being known to decrease reaction time (Lund & Burgess, 1996; Lund
et al., 1995). A non-reusable example for direct collection of human
judgments is the work by Schnabel et al. (2015), who used crowd-

34 http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

[Accessed May 28th 2019].
35 http://www.kiraradinsky.com/files/Mtruk.csv [Accessed May 28th

2019].
36 https://staff.fnwi.uva.nl/e.bruni/MEN [Accessed May 28th 2019].
37 https://www.informatik.tu-darmstadt.de/ukp/research_6/data/

semantic_relatedness/german_relatedness_datasets/index.en.jsp

[Accessed May 28th 2019].

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
http://www.kiraradinsky.com/files/Mtruk.csv
https://staff.fnwi.uva.nl/e.bruni/MEN
https://www.informatik.tu-darmstadt.de/ukp/research_6/data/semantic_relatedness/german_relatedness_datasets/index.en.jsp
https://www.informatik.tu-darmstadt.de/ukp/research_6/data/semantic_relatedness/german_relatedness_datasets/index.en.jsp
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sourcing to directly compare word similarity systems.
Human judgments contained in pre-existing resources can also be
re-used, e.g., questions from language test material (see e.g., Landauer
& Dumais (1997), Turney (2001)) or thesauri transformed to provide
explicit similarity values (see e.g., Rada et al. (1989), Lin (1998),
Pedersen et al. (2004)).
Word embeddings lead to an ongoing search for alternative intrinsic
evaluation approaches. Analogy-based evaluation is commonly used
and supported by two large data sets for English (see page 24).
Konkol et al. (2017) recently proposed to evaluate word embedding
algorithms by their suitability for predicting distances between geo-
graphical locations, whereas Gamallo (2018) suggests using an outlier
detection task.

2.5. Diachronic Distributional Research

The collection of large digital corpora (see Chapter 3 for examples
and specific pitfalls) has made diachronic corpus-based studies in-
creasingly popular in linguistics (see e.g., Biber et al. (2000, p. 205)),
computational linguistics and the digital humanities. This section
discusses such approaches with a focus on recent studies using word
embeddings. Using distributional methods to analyze diachronic pro-
cesses was already suggested by Koll (1979, p. 48):

“An author’s development and changing interests could be plotted
and traced. One could view the emergence of new disciplines or
subdisciplines and the converging and diverging of older schools of
thought. The changing focus of an organization could be followed.
In short, the [semantic] space could serve as a visual history of the
concept relations of its population.”

Following de Saussure’s classical signifier-signified model (Wunderli,
2013), two types of semantic change are possible, i.e., a fixed signifier
(word) with a variable signified (meaning) or a fixed signified ex-
pressed through variable signifiers. An example for the former would
be mouse getting the additional sense ‘input device’, whereas Joseph
Ratzinger becoming Pope Benedict XVI is an example for the latter
(from Tahmasebi et al. (2012)). It is further possible to distinguish
between changes of the signified affecting primarily its denotation
(e.g., the above-mentioned mouse) and those affecting primarily its
emotional connotation (e.g., Pinker (1994)’s ‘euphemism treadmill’).
The latter was largely ignored so far and is discussed in Section 5.1.
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Section 2.5.1 contains (mostly older) examples for studies not utilizing
word embeddings, whereas Section 2.5.2 describes word embedding-
based studies in general. Section 2.5.3 is concerned with studies trying
to find general laws of semantic change based on word embeddings.
Finally, Section 2.5.4 provides a short look at the assessment of va-
lidity in diachronic research. Applied research on tools for diachronic
studies is discussed separately in Section 5.2.4.
Further discussion with a focus on technical advances in using word
embeddings to study semantic change can be found in a very recent
survey by Kutuzov et al. (2018) which was helpful for compiling
this overview. Their survey is more optimistic than this thesis, as
it focuses on work analyzing increasingly shorter time spans (see
also Del Tredici et al. (2019)) and narrower domains, while largely
ignoring validity and reliability issues. Especially the latter are, as
shown in Chapter 4, severe for methods involving neural networks
and should be cause for skepticism towards many results discussed
here, in particular those discussing changes for single words.

2.5.1. Non-Embedding Approaches

Probably the simplest distributional approach is observing changes
in word frequency. The premiere example for this line of research is
Michel et al. (2011), who collected the Google Books N-Gram Corpus
(see Chapter 3) and proposed using such large scale corpora to analyze
all kinds of cultural processes, e.g., censorship or career trajectories.
Frequency information is popular in corpus linguistics, e.g., Hilpert
& Gries (2009) discussed clustering as a solution for dividing fre-
quency time lines in segments. Frequency information is also used
in the digital humanities, e.g., to study the assumed importance of
researchers via the frequency of their names (O’Sullivan et al., 2017).
Frequency combined with part-of-speech information can be enough
to identify some cases of semantic word change, e.g., the rise of apple
(corpus was lower cased) as a company name and proper noun in
contrast to apple as a fruit and common noun (Kulkarni et al., 2015).
Unsurprisingly, frequency-based approaches perform worse than more
complex ones (Gulordava & Baroni, 2011; Kulkarni et al., 2015).
However, Englhardt et al. (2019) found adding frequency information
to benefit word embedding-based change detection.
Word association (see Section 2.2.1) is used for corpus linguistic stud-
ies (e.g., Biber et al. (2000, p. 205 & pp. 265–268) or Taavitsainen
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(2015)), with some authors fully adapting vector representations (del
Prado Mart́ın & Brendel, 2016; Hilpert, 2007; Hilpert & Perek, 2015;
Perek, 2014). These studies are often concerned with the rise of new
syntactical constructions and thus employ syntactical information to
determine contexts, e.g., filtering for part-of-speech patterns to ana-
lyze constructions like V the hell out of NP (Perek, 2014). However,
non-word embedding vectors containing association values can also
be used to study semantic change (see Gulordava & Baroni (2011),
Zou et al. (2013)).
It is also possible to use clustering-based word sense disambiguation
algorithms to track semantic change. Tahmasebi et al. linked clusters
created for different time spans to find changes in word meaning (Tah-
masebi et al., 2012; Tahmasebi & Risse, 2017a,b; Tahmasebi, 2013).
A similar approach38 was used in several other diachronic studies
(Mitra et al., 2015, 2014; Riedl et al., 2014). They distinguished,
in contrast to Tahmasebi et al., between different types of semantic
change while comparing clusters over time. Recchia et al. (2017) clus-
tered words based on pre-existing word embeddings (from Hamilton
et al. (2016c)). Clusters were initiated based on embedding derived
similarity during a first time span and then iteratively updated for
each subsequent time span. Pölitz et al. (2015) used diachronic topic
modeling on corpora filtered to contain only contexts of a word in
question. The resulting topics were assumed to correspond to senses
and used to track semantic change. The evaluation of sense specific
word change is complicated due to differing levels of granularity. For
example, Tahmasebi & Risse (2017b) had to manually merge their
(too) fine-grained clusters, e.g., multiple clusters concerned with rock
in the sense of music, for comparisons with a dictionary.

2.5.2. Embedding Approaches

The earliest example for embedding based diachronic research I am
aware of is Sagi et al. (2009, 2012) tracking e.g., the semantic widening
of dog during Early Modern English. They used SVD to generate time
span specific embeddings based on a co-occurrence window, filtering
words to retain only those of high–medium frequency. The resulting
embeddings were then used to analyze whether the contexts of a

38 They used Chinese Whisper clustering (Biemann, 2006), whereas Tahmasebi
et al. used curvature clustering (Dorow, 2006).
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word in question became more or less diverse—according to the aver-
age pairwise cosine between vectors representing context words—over
time.
Another early example is Jurgens & Stevens (2009) using random
indexing39 on blog posts to generate word embeddings. They com-
pared embeddings from subsequent time spans directly (by cosine)
to judge whether a word had changed or not, a now extremely com-
mon approach. Kim et al. (2014) were the first to use word2vec

embeddings in a diachronic setting and also developed a visualization
with line charts of most similar words over time.40 They, as well
as several follow-up studies (e.g., Kulkarni et al. (2015) or Hamilton
et al. (2016c)), used sub-corpora of the Google Books Ngram corpus
(see Section 3.3) which are far larger than the corpora available
beforehand.
Word embeddings need to be aligned, i.e., the same type of semantic
information must be encoded in matching dimensions, to be com-
parable with each other. This is due to the embedding algorithm
being free to use an arbitrary dimension to encode some semantic
information—recall the information preserving rotation illustrated
in Figure 2.3. Embeddings trained on different corpora, e.g., from
different time spans, are not aligned without further intervention.41

Alignment can be achieved by using the embeddings from each time
span to initiate those of the succeeding one (Kim et al., 2014), but
such an approach greatly increases effective training time, as all time
spans must be modeled sequentially.
Alternatively, word embeddings for each time span are trained inde-
pendently and then aligned in a post-processing step (Hamilton et al.,
2016c; Kulkarni et al., 2015; Szymanski, 2017; Zhang et al., 2015,
2016). Section 4.3 explores the influence of both approaches on word
embedding reliability. Post-processing can either rotate all vectors
at once to minimize the distance between corresponding embeddings
(can be solved as an orthogonal procrustes problem by applying SVD,
see Hamilton et al. (2016c); Schönemann (1966)) or modify each

39 Random indexing (Kanerva et al., 2000) represents contexts with random
vectors and words with vectors generated by calculating the sum/centroid of their
contexts’ vectors.

40 Now used in JeSemE, see Section 5.2.4 for a discussion of visualizations.
41 Due to the reliability issues discussed in Chapter 4, such an alignment can

be necessary even when comparing embeddings trained on the same data.
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vector separately. The latter approach uses regression models based
on the assumption that each words’ distance to reference words (e.g.,
its most similar words) should be temporally stable (Kulkarni et al.,
2015; Szymanski, 2017; Zhang et al., 2015, 2016).
A recent solution to the alignment problem are embeddings trained
simultaneously for multiple time spans. This is conceptually attrac-
tive, as two-step procedures can be argued to be an approximation
of such a simultaneous process (Yao et al., 2018). Jatowt & Duh
(2014) concatenated co-occurrence counts for multiple time spans in
one matrix (i.e., using time span specific rows, respectively columns,
to encode co-occurrences) and performed SVD to create time spe-
cific embeddings. Bamler & Mandt (2017) built upon SGNS which
they extend with variants for sharing word and context vector infor-
mation either only forward or both forward and backward in time,
thus achieving smoother change trajectories than prior approaches.
Rudolph & Blei (2018) extend a generalized form of CBOW to share
word, but not context vectors, forward through time. Yao et al. (2018)
used embeddings based on the decomposition of PPMI co-occurrence
matrices. Their optimization process tries to balance two goals, i.e.,
embeddings for different time spans being similar with each other
and embeddings for each time span being suited for accurate PPMI
matrix reconstruction. Finally, Rosenfeld & Erk (2018)’s approach
is an extension of SGNS which jointly trains a time independent
embedding for each word and a vector representing all words at once
for a point in time. These can then be combined to form time specific
word embeddings.
Aligned embeddings make it possible to directly detect semantic change
by comparing embeddings trained on different time spans, but for
the same word (see e.g., Kim et al. (2014)). They can also be used
to identify words that replaced each other, e.g., iPod and Walkman
(Zhang et al., 2015). This can be done either by directly comparing
embeddings (Szymanski, 2017) or by also using information on most
similar words (Zhang et al., 2015, 2016).
Alignment is not needed in diachronic studies observing changes in
the most similar words instead of directly comparing embeddings
from different time spans. Such an approach was not only used in
Chapter 5, but also in several digital humanities studies (e.g., Jo
(2016), Kenter et al. (2015)). Rodda et al. (2016) generated time
specific matrices with similarity values between all words and used the
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correlation between those matrices to identify words which underwent
semantic change (by their low correlation). Eger & Mehler (2016)
created vectors representing each word with its similarity to all other
words of the vocabulary at a point in time. They then identified
words that likely underwent semantic change by comparing these
vectors and sorting them by their relative differences between different
points in time. Hamilton et al. (2016b) compared such an approach
with measuring the cosine between aligned vectors, finding it to be
more sensitive to changes affecting nouns. Kutuzov et al. (2017)
also compared a cosine based analysis of aligned embeddings and an
analysis where the similarity of words to anchor words at different
points of time was observed, finding both to perform roughly similar
as features for text classification.
Another type of study possible without cross temporal alignment
was conducted by Garg et al. (2018), who measured the similarity
of embeddings for occupations with those for words indicating gender
or ethnicity. They could quantify stereotypes and misrepresentations
via comparison with historical workforce composition.

2.5.3. Laws of Semantic Change

Several recent studies tried to find general ‘laws of semantic change’
by comparing embeddings trained for the same word, but on texts
from different time spans.
Xu & Kemp (2015) tested linguistic hypotheses on the development of
synonyms, finding synonymous words to stay similar to each other and
develop in parallel. Eger & Mehler (2016) showed words to change
with a constant corpus-specific speed. However, this speed was higher
for shorter time spans, possibly implying some form of artifact. Du-
bossarsky et al. (2015, 2016) created clusters from word2vec embed-
dings and found prototypicality, i.e., closeness to the center of these
clusters, to prevent semantic change. Dubossarsky et al. (2016) found
parts of speech to have major effects on the average change between
time spans, e.g., verbs change 50% faster than adjectives. They also
found frequency and word change to be nearly un-correlated, i.e.,
frequent and infrequent words change at the same speed. In contrast,
Hamilton et al. (2016c) found high frequency words to change slower
than low frequency words and polysemy to speed up semantic change.
However, Dubossarsky et al. (2017) showed that such studies are
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prone to artifacts. They created control corpora—for which the ap-
propriate amount of semantic change was known—by mixing texts
from different time spans or subsampling texts from one time span.
They found reports on correlations between apparent change42 and
word frequency as well as polysemy to be mostly due to noise, dis-
proving results from Dubossarsky et al. (2015), Dubossarsky et al.
(2016) and Hamilton et al. (2016c).
Note that this line of research was concerned with word populations
and not individual words and is thus of limited relevance for this
thesis and arguably also for the validity of its methods.

2.5.4. Validity

Evaluating and comparing approaches for modeling word change is
challenging, both in general and due to a lack of resources (Kutu-
zov et al., 2018). With the exception of studies looking at short
term changes (mainly in social media, but see also Gulordava &
Baroni (2011)), the human lifespan limits the availability of anno-
tators speaking both the historical and the contemporary variety of a
language. While the former type of studies is increasingly popular
(Kutuzov et al., 2018), it is questionable whether approaches are
directly transferable to longer time spans.
The intrinsic test sets from Section 2.4 are of limited use to assess
the quality of embeddings trained on non-recent texts, since they
are artifacts of the time of their creation. For example the German
Gur350 contains Internetseite ‘website’ and Stoiber, the name of a
then prominent German politician. English test sets are also affected,
e.g., Arafat and Maradona are part of WordSim-353, while MEN lists
ipod-n.43

Four evaluation strategies directly using word embeddings and suited
for long term trends were proposed so far, here ordered by their
assumed potential for future research:

42 Measured with SVDPPMI or raw co-occurrence frequencies. PPMI vectors
without dimensionality reduction were less affected. SGNS was reported to be
similarly affected as SVDPPMI in a footnote.

43 All words in MEN are provided in lower case and with a suffix indicating
their part-of-speech.
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• Exemplary words, e.g., picked for their change according to the
approach in question or from examples in prior publications, can
be used to compare predictions and expectations (e.g., Kulkarni
et al. (2015), Hamilton et al. (2016c)). These approaches tend to
focus on a small number of high frequency words, limiting both
insights into many potential errors and statistical significance.

• Language change can be simulated by manipulating the under-
lying corpora, e.g., by replacing words with each other (Kulkarni
et al., 2015) or merging them to a single pseudo-word (Rosenfeld
& Erk, 2018). This approach can be used to create large test sets
with words of different frequencies and with arbitrary change
patterns, but it might suffer from artifacts.

• Cross-temporal equivalents, e.g., succeeding office-bearers, can
be compared for their similarity at different points in time (Yao
et al., 2018; Zhang et al., 2015). Such test sets can potentially
be created automatically from public records, e.g., Wikipedia
entries.

• Creation of a gold standard based on text samples for a word in
question from different points in time (Schlechtweg et al., 2017).
Annotators (possibly linguistic experts) judge these for change
phenomena, e.g., metaphorical usage.

Approaches can also be evaluated extrinsically, i.e., by using word
representations as features for some downstream task. Mihalcea &
Nastase (2012) suggested a task where text samples must be classified
for their temporal provenance. This task was later adopted by the
SemEval-2015 challenge (Popescu & Strapparava, 2015). Kutuzov
et al. (2017) used changes in word representations for locations in
news texts to train a classifier to recognize military conflicts. Jaidka
et al. (2018) showed models for characterizing social media users
to depend on recent word embeddings. Yoon et al. (2018) showed
information retrieval to benefit from word embeddings trained on
texts contemporary with the texts to retrieve.
Overall, research seems to focus on potential applications without
first ensuring methods to be well-suited, e.g., by creating proper gold
standards or conducting in-depth case studies. Artifacts become a
potentially severe confounding factor which might mislead linguists
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or scholars with a limited awareness for ongoing research in compu-
tational linguistics.
Due to its focus on word embedding reliability, this thesis provides
only limited experiments on validity. Synchronic validity was assessed
with word similarity and analogy test sets, showing our training setup
to be well-suited (see Chapter 4 and especially page 57). Diachronic
validity was assessed directly through qualitative case studies in Sec-
tion 5.3 which indicate variants of SVDPPMI to be apt for tracking
the meaning of words over time.



Chapter 3

Diachronic Corpora

Sufficiently large corpora are a requirement for distributional studies
in general1 and this thesis in particular. Creating digital diachronic
corpora is labor intensive, as older texts are seldom digitized, and
rife with legal problems, as many 20th century texts are protected
by copyright. To avoid such issues, this thesis relies on several pre-
compiled corpora in both German and English which are described
in this chapter.
The proper selection of texts is a major problem during corpus cre-
ation (see e.g., McEnery & Wilson (1996, pp. 64–66), Hunston (2002,
pp. 14–16, pp. 28–30)), with Biber et al. (2000, 246–253) describing
three strategies:

Proportional selection of texts according to text production, e.g.,
if 100 poems and 20 novels were written, one would sample in a 5:1
ratio to form a corpus. A downside of this strategy is the risk of
missing rare phenomena.

Stratified selection of texts to represent each (important) varia-
tion, e.g., if 100 poems and 20 novels were written, one would
sample from both equally to form a corpus. Proper text selection
is more challenging than with other methods.

1 Sometimes the results returned by internet search engines are used as
substitutes (e.g., Turney (2001)), but this approach suffers from very opaque
and ever-changing data, reducing both its validity and reliability.

49
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Exhaustive selection of texts includes all texts from a source or
author, e.g., if 10 poems and 8 novels were written by an author,
one would combine all to form a corpus. This strategy is well-suited
for domain-specific studies, but results are not representative for
language at large.

Improper text selection and changes in corpus composition can mis-
lead analyses as they are hard to distinguish from real distributional
data (Koplenig, 2017). The case study on Romantik in Section 5.3.2
shows such an interference which was caused by a change in corpus
composition described in Section 3.3.
Another confounding factor besides text selection is the quality of
text digitization. Optical character recognition (OCR) has troubles
processing old documents, e.g., a case study on historical newspapers
found up to 1/3 of all words to be misrecognized (Tanner et al.,
2009). A typical OCR error in historical texts is medial-s ‘

∫
’ be-

ing confused with ‘f ’ (Lin et al., 2012, p. 174). A study on OCR
errors’ effect on distributional analysis indicates robustness against
low to moderate (about 20%) levels of OCR errors for topic modeling
(Walker et al., 2010), which might also be the case for other methods.
Higher quality digitization can be achieved with manual transcription,
especially with double-keying, i.e., independent transcription by two
individuals.
Finally, corpora differ in the level of text normalization, meta data
and annotation they provide. Normalization is especially important
for diachronic studies, e.g., German did not have a generally agreed-
on orthographic standard in the 19th century due to political frag-
mentation (Schmidt, 2007, p. 172). Fortunately, all corpora provide
normalization, with the exception of the Google Books Ngram corpus
discussed in Section 3.3. While such normalization is unlikely to
be flawless, it should provide more uniform input for distributional
modeling.
Section 3.1 introduces the large and well-curated Corpus of Historical
American English. Section 3.2 describes the Deutsches Textarchiv
Kernkorpus [‘German text archive core corpus’], a well-curated re-
source for German, especially for texts from the 19th century. Section
3.3 is concerned with the Google Books Ngram Corpus. It is the
largest existing diachronic corpus and has sub-corpora for several
languages and domains. Finally, Section 3.4 describes the relatively
small and domain-specific Royal Society Corpus.
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3.1. Corpus of Historical American English

The Corpus of Historical American English (COHA; Davies (2012))
is a stratified corpus spanning from the 1810s to the 2000s, with
the only major changes in its composition being the inclusion of
newspaper texts from the 1860s on and an increase in size between
the 1810s and 1830s (see Figure 3.1). COHA is unique in being
at the same time “quite large — 100 times larger than any other
structured corpus. But it is also well balanced by genre and sub-genre
in each decade, and it has been carefully lemmatized and tagged for
part-of-speech.” (Davies, 2012, p. 122). COHA can be freely queried
online2 or downloaded with a license.
COHA is annotated with automatically determined tokens, lemmata
and part-of-speech tags. These were manually checked on the type
level for the 100k most frequent words. It also provides limited meta
data for each text sample, i.e., author, year and title.3 COHA consists
of texts from several preexisting collections, e.g., Project Gutenberg
(see Davies (2012, p. 125) for details), often converted with OCR.
Davies used a quality control scheme in which texts were compared
with contemporary texts from the same genre to discard those likely
to be affected by OCR errors.
A potential problem when using COHA is 10 words out of every 200
being replaced with placeholders due to fair-use limitations of the
underlying texts.4 Later experiments ignore these replaced words or
use the online version for examples which seems to be unaffected and
provides convenient mapping between text samples and sources.

3.2. Deutsches Textarchiv

The Deutsches Textarchiv Kernkorpus (DTA) [‘German text archive
core corpus’] is the result of an ongoing effort to create a digital full
text corpus of printed German texts from the 15th to the 19th century
(Geyken, 2013; Geyken & Gloning, 2015; Haaf, 2016; Haaf et al., 2015;
Haaf & Thomas, 2016). It is based on manually transcribed (mostly

2 https://corpus.byu.edu/coha/ [Accessed May 28th 2019].
3 See here for details on composition and text samples: https://corpus.byu.

edu/coha/files/cohaTexts.xls [Accessed May 28th 2019].
4 https://www.corpusdata.org/limitations.asp [Accessed May 28th

2019].

https://corpus.byu.edu/coha/
https://corpus.byu.edu/coha/files/cohaTexts.xls
https://corpus.byu.edu/coha/files/cohaTexts.xls
https://www.corpusdata.org/limitations.asp
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Figure 3.1: Number of tokens per decade in COHA.
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Figure 3.2: Number of tokens per decade in DTA.
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double keying, in some cases corrected OCR) digital facsimiles and
covers multiple genres, i.e., belles lettres, academic texts and general
non-fiction (as well as a small number of journalism texts), and do-
mains (e.g., poem, biology or medicine). It provides rich metadata
on these categories as well as authors, publishers, editors, etc. and
also offers automatic orthographic normalization (mapping archaic
forms to contemporary ones) and lemmatization (Jurish, 2013). A
snapshot of this still ongoing corpus project5 is provided for download
in the TCF format,6 which preserves these metadata and linguistic
annotations.7 DTA is rather small and its size is not constant over
time, as shown in Figure 3.2.
DTA aims to represent the overall development of German and can
thus be described as a stratified corpus. Its individual texts were
chosen for being representative from a linguistic point of view and
can include historically popular translations.8 The number of texts
from each genre is not stable over time, as shown in Figure 3.3 based
on online documentation. However, fiction and non-fiction are rather
balanced for the timespans used in Sections 4 and 5.
The two main problems of using DTA for linguistic research are its
only partially stratified nature and its relatively small size, which are
addressed in later experiments by discarding early texts and combin-
ing texts from 30 years each (see Chapter 5).

3.3. Google Books Ngram Corpus

The Google Books Ngram corpus (Lin et al., 2012; Michel et al., 2011)
contains texts in multiple languages and, for English, also multiple
domains.9 This thesis uses the English Fiction (GBF) and German

5 The September 1st 2017 version was used here, see http://www.

deutschestextarchiv.de/download [Accessed May 28th 2019].
6 https://weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/

The_TCF_Format [Accessed May 28th 2019].
7 We developed tools for reading and converting this format and made them

publicly available as part of the JULIE Lab UIMA Component Repository
(Hahn et al., 2016; Hellrich et al., 2017): https://github.com/JULIELab/

dta-converter [Accessed May 28th 2019].
8 For example Lenz (1774) contains a translation of Shakespear’s ‘Love’s

Labour’s Lost’.
9 These are: English (with sub-corpora ‘One Million’, ‘British’, ‘American’

and ‘Fiction’), Chinese, French, German, Hebrew, Italian, Russian and Spanish.

http://www.deutschestextarchiv.de/download
http://www.deutschestextarchiv.de/download
https://weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/The_TCF_Format
https://weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/The_TCF_Format
https://github.com/JULIELab/dta-converter
https://github.com/JULIELab/dta-converter
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(GBG) sub-corpora. It is the largest diachronic corpus ever collected
and contains about 6% of all books published between 1500 and 2009.
Texts are provided as n-grams10 up to 5-grams. Figure 3.4 shows the
growth of GBF and GBG and the dominance of recent texts.
The Google Books Ngram corpus was created by digitizing library
collections11 as well as books provided by publishers. It is hard to
describe with Biber et al. (2000)’s criteria (see page 49), as no infor-
mation on the underlying books is provided. Research by Pechenick
et al. (2015) showed its general language English sub-corpus to con-
tain an increasing number scientific publications in recent years, with
GBF being less affected. One indicator are parentheses which are
more frequent in scientific texts due to their role in citations and
references. Pechenick et al. (2015) did not analyze GBG, but the
percentage of opening parentheses in Figure 3.5 clearly shows it to be
highly affected—ignoring some very early outliers, there are far more
parentheses in GBG than in GBF and their number increases over
time. This combination of opaqueness and changing composition was
already criticized in prior publications, as they could cause apparent
changes in word usage (see e.g., Koplenig (2017)). The case studies
in Section 5.3 confirm this warning, with GBG being very misleading,
especially in regards to the word Romantik.
The Google Books Ngram corpus provides not only raw text, but
also part-of-speech annotations and dependency parse tree fragments.
Neither information was used in this thesis due to their limited utility
when training word embeddings (see Section 2.1). The corpus can
be searched for frequency information with a web interface12 or be
downloaded13 for local processing, as was done here.
The n-gram format leads to sampling errors when contexts are deter-
mined with a sliding window (see Section 2.1), a fact barely discussed
in the literature. If the outermost tokens of the n-grams are not

10 Sequences of n tokens annotated with the frequency of this sequence in the
corpus (per total occurrences and per books, the former being used in this thesis).
For example a sequence of 5 tokens a b c d e would result in the following 3-grams:
a b c, b c d and c d e.

11 Based on a comparison of available titles, Jones (2010) found Google Books—
of which the Google Books Ngram corpus is a subset—to be at least as well suited
for 19th century studies as most American research libraries.

12 https://books.google.com/ngrams [Accessed May 28th 2019].
13 http://storage.googleapis.com/books/ngrams/books/datasetsv2.

html [Accessed May 28th 2019].

https://books.google.com/ngrams
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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used as centers, then their co-occurrences with inner words are under-
sampled, whereas the inverse is true if they are used as centers. This
thesis uses the latter approach, while the former was used at least
by Hamilton et al. (2016c).14 Differences are likely to be small, as all
words in the underlying texts are equally affected. A third alternative
is only using the outermost words as centers, but none of the inner
ones (Jatowt & Duh, 2014). This is problematic, as n-grams are
calculated sentence-wise (Lin et al., 2012, p. 171), i.e., first and last
words of a sentence are never used as contexts with this method.
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Figure 3.4: Number of 5-grams per year in GBF and GBG.
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Figure 3.5: Percentage (per year) of 5-grams with at least one opening
parentheses, i.e., ‘(’, in GBF and GBG.

14 Only evident from source code: https://github.com/williamleif/

histwords [Accessed May 28th 2019].

https://github.com/williamleif/histwords
https://github.com/williamleif/histwords
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3.4. Royal Society Corpus

The Royal Society Corpus (RSC; Kermes et al. (2016)) contains two
centuries (1665–1869) of scientific publications from the Royal Society
of London. It can be both queried online and downloaded15 and
includes the ‘Philosophical Transactions’ (i.e., the longest running
scientific journal) and its spin-offs.16

Source documents were acquired from JSTOR17 and were thus al-
ready scanned and processed with OCR. Kermes et al. (2016) used
post-processing to correct OCR errors and performed automatic to-
kenization, lemmatization and part-of-speech tagging. They also
added metadata (JSTOR already provided some, e.g., author and
title) by using topic modeling to detect scientific disciplines and lan-
guages. RSC is pre-segmented into 50 year periods,18 e.g., 1650–1699,
with Figure 3.6 showing the respective size of each period.
RSC is thus an example for an exhaustive corpus and well suited
for investigating questions in the history of science (see e.g., Section
5.3.1), but not for more general inquiries.
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Figure 3.6: Number of tokens per time period in RSC.

15 https://fedora.clarin-d.uni-saarland.de/rsc/ [Accessed May 28th

2019].
16 These spin-offs, i.e., ‘Abstracts of Papers Printed in the Philosophical Trans-

actions of the Royal Society of London’, ‘Abstracts of Papers Communicated to
the Philosophical Transactions of the Royal Society of London’ and ‘Proceedings
of the Royal Society of London’, and a later split were required due to increasing
submissions and the divergence of scientific disciplines (Fyfe et al., 2015, p. 233).

17 https://www.jstor.org [Accessed May 28th 2019].
18 The last one (1850–1869) is shorter, yet it contains more texts than others.

https://fedora.clarin-d.uni-saarland.de/rsc/
https://www.jstor.org


Chapter 4

Reliability of Word Embeddings

There are two fundamental requirements that word embeddings used
for corpus linguistic research must fulfill. Firstly, they must be valid
and model lexical semantics in a way that matches human under-
standing. Secondly, they must be reliable and produce consistent
results when experiments are repeated.
In regards to validity, it is commonly measured intrinsically by solving
analogies or judging word similarity with a word embedding model
(see Section 2.4). We1 used both strategies to gauge the suitability
of the models trained in this chapter for down-stram tasks. In gen-
eral, word embeddings with sufficient training material achieve about
human level performance in word similarity tasks, unless evaluated
for strict similarity (see Section 2.2.2). For example, the SVDwPPMI

method trained on the 2000s time span of COHA achieved a rank
correlation of ρ = 0.35 on SimLex-999 and ρ = 0.58 on WS-353
(see Section 4.6). The average pairwise correlation between annota-
tors on both data sets is ρ = 0.67 and ρ = 0.61, respectively (Hill
et al., 2014). With a larger training corpus—sadly seldom available
for (diachronic) corpus linguistic studies—SVDwPPMI still performs
below human level for SimLex-999 (ρ = 0.44), but above for WS-353
(ρ = 0.65).
In regards to reliability, we were, to the best of our knowledge, the first
to investigate this problem. Section 4.1 describes how we quantified it
in our experiments, while Section 4.2 provides background on causes

1 Plural is used as experiments in this chapter were planed and published in
co-operation with my supervisor Professor Dr. Udo Hahn and in one case also
Bernd Kampe.
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for (lacking) reliability. Section 4.3 contains our first reliability study
on SG embeddings which was presented at the LaTeCH workshop
(Hellrich & Hahn, 2016a). Section 4.4 describes follow-up research
covering multilingual data and was presented at COLING (Hellrich &
Hahn, 2016b). Section 4.5 provides an extension of our experiments to
two additional algorithms, i.e., GloVe and SVDPPMI. It allowed us
to identify SVDPPMI (with a proper downsampling strategy) as per-
fectly reliable and was presented at the Digital Humanities conference
(Hellrich & Hahn, 2017a). The experiment in Section 4.6 is concerned
with the influence of downsampling on reliability. We could show our
novel SVDwPPMI variant of the SVDPPMI algorithm to be superior
in reliability and comparable in accuracy. The statistical analysis for
this experiment was performed by Bernd Kampe. A extended version
of this experiment was presented at RepEval (Hellrich et al., 2019b).
Finally, Section 4.7 provides an overview of the performance of all
SGNS implementations used in this thesis and Section 4.8 discusses
our results in relation to the scarce related work.

4.1. Quantifying Reliability

Reliability describes how well measurements can be repeated2 and
can thus be quantified by repeating a measurement and comparing
results. Here, taking a measurement consists in training a word
embedding model and using it to determine the most similar words for
some words serving as anchors. A perfectly reliable word embedding
method results in the same most similar words when trained multiple
times on the same corpus (with the same parameters). In contrast,
an unreliable method results in (some) different most similar words
for these anchor words.
Several metrics can be applied to this problem which can be linked
to older research on the agreement between distributional thesauri

2 In a general sense, i.e., including both replication and reproduction. The
former is concerned with carrying “out exactly the same task as the original
researcher, with the expectation that the result will be the same” (Ivie & Thain,
2018, p. 63:3). In contrast, the latter consists of carrying “out tasks that are
equivalent in substance to the original, but may differ in ways that are not
expected to be significant to the final result” (Ivie & Thain, 2018, p. 63:4). The
following experiments could be argued to be concerned with either replication or
reproduction, depending on ones stance on seeds for random number generation
being part of experimental setups.
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(Padró et al., 2014; Weeds et al., 2004). Weeds et al. (2004) rep-
resented each anchor word with a vector containing its similarity
(expressed as a rank) to all other anchor words. Systems were then
compared by calculating the cosine between these vectors. Padró
et al. (2014) compared the most similar words both with the Jaccard
coefficient (Jaccard, 1912) as well as two position sensitive metrics.3

Antoniak & Mimno (2018) also used the Jaccard coefficient, in ad-
dition to comparing the difference in rank for specific most similar
words in relation to an anchor, as well as the variance in cosine
between vector representations for an anchor and its most similar
words. Wendlandt et al. (2018) used the percentage of identical words
in the lists of most similar words for each anchor.
We used both a percentage based reliability metric (Section 4.3–4.5)
as well as the Jaccard coefficient (Section 4.6). Both metrics are
concerned only with words being among the most similar words for
an anchor, but not their exact ranking. This is a deliberate choice
due to the assumed corpus linguistic application, where scholars in-
terpret a limited number of most similar words provided as lists or
in visualizations (see Section 5.2 for example visualizations). The
presence of a word among these (typically 2–10) most similar words
is thus already a major factor for any interpretation, see Table 4.4 for
an example of the differences to expect.
Our percentage based reliability metric for the n most similar words
r@n (Equation 4.1) and the averaged Jaccard coefficient for the n
most similar words j@n (Equation 4.2) are defined very similarly.
Both depend on a set M of word embedding models for which the
n most similar words (by cosine) for anchor words from a set A are
compared, using the function s(a, n,m) to provide the set of n most
similar words for an anchor word a according to a model m:

r@n =
1

A

∑
a∈A

|
⋂
m∈M s(a, n,m)|

n
(4.1)

j@n =
1

A

∑
a∈A

|
⋂
m∈M s(a, n,m)|

|
⋃
m∈M s(a, n,m)| (4.2)

3 Position sensitive metrics are not only concerned with the presence of a word
among the most similar words, yet also with its relative position among those.
An example is the cosine approach by Weeds et al. (2004).
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The different divisor makes j@n stricter than r@n, as non-identical
words among the sets of most similar words cause both a lower
dividend and a higher divisor. Increases in n seem to have relatively
little effect on percentage based measures (and thus likely also j@n)
for n > 10, with highest r@n being measured for n ≈ 5 (see below as
well as Wendlandt et al. (2018)). Reliability values also differ with the
size of M , more models leading to lower values (Antoniak & Mimno,
2018). Exact reliability values from different studies can thus not be
compared in most cases, but general trends should be transferable.

4.2. Causes for Reliability Issues

Reliability issues can arise both from the creation of low dimensional
word embeddings from high dimensional data4 and from the preceding
sampling of the high dimensional data. The latter case might seem
relatively trivial—if contexts are downsampled (see Section 2.1) with
a probabilistic approach, results will be different every time a program
is run—, but its effect on embedding reliability was not investigated
before the experiments described in Section 4.6. Problems due to the
creation of low dimensional representations are probably more interes-
ting from a theoretical point of view and lead to some surprising
pitfalls in common implementations of word embedding algorithms.
These problems cannot affect SVD based word embeddings (unless
stochastic SVD is used), as repeated SVD calculations produce iden-
tical singular vectors for a constant context matrix (Halko et al., 2011;
Saad, 2003).5

In contrast, SGNS and GloVe both begin with random vectors
which are then iteratively updated via stochastic gradient descent.
Both, the initial starting position and the order in which examples
are processed, can affect the final vectors. Stochastic gradient descent
is well known to find one of many different local minima, but not a

4 Either available explicitly in a word context matrix or implicitly in the
examples processed by a streaming algorithm.

5 Since SVD algorithms only approximate the exact results of analytic SVD,
results are bound to a specific algorithm. The LAS2 algorithm used in all SVD
word embedding experiments in this thesis is known for providing good singular
vectors for high singular values, i.e., those kept during economic SVD (Berry,
1992). As with all computations different algorithm implementations and different
computing hardware might also slightly affect outcomes, e.g., due to the limited
precision of floating point numbers.
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global one (see e.g., LeCun et al. (2015)). Thus, different staring
positions are very likely to result in a different local minimum and
thus different word embeddings every time the algorithm is run (recall
the illustration in Figure 2.6).
It is important to remember that random numbers in computer pro-
grams are commonly not truly random, but only appear so despite
being generated deterministically from an initial seed value (von Neu-
mann, 1963). Using a fixed seed should make experiments determin-
istic and was suggested by e.g., Sandve et al. (2013) and Pierrejean
& Tanguy (2018a). However, this would make the seed an additional
parameter that can be optimized for performance, with at least some
types of machine learning models being shown to appear significantly
better or worse solely due to different seeds (Henderson et al., 2018).
From a digital humanities point of view, the choice of seed (which
determines the resulting most similar words) could lead to different
qualitative interpretations.
Almost all implementations of word embedding algorithms evaluated
in this thesis use such a fixed seed.6 Their results are nevertheless non-
deterministic due to the commonly used multi-threading confounding
the order in which examples (in a corpus or word context matrix) are
processed. Threads achieve different speeds and thus process differ-
ent words when experiments are repeated.7 This mismatch between
algorithm and implementation can be assumed to be deliberate, as
it eases debugging—a benefit of fixed seeds already highlighted by
von Neumann (1963). Due to our results favoring SVDPPMI (or its
SVDwPPMI variant) we did not further explore the influence of the
mismatch, except for the comparison of SGNS implementations in
Section 4.7.

4.3. A First Look at SG Reliability

This first experiment is concerned with the accuracy and reliability
of SG word embeddings derived from different training protocols as
depending on word frequency, ambiguity and the number of itera-

6 The only exceptions are the generation of initial vectors in Gensim (only
when Python 3 is used) as well as downsampling in my modified version of
hyperwords.

7 This can indirectly also causes different downsampling and potentially also
different learning rates. See Section 4.7 for implementation specific details.
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tions.8 Its parameters and choice of corpus, i.e., samples of the GBF
(see Chapter 3 for details), were inspired by two papers pioneering
SG embeddings as a tool for diachronic analysis (Kim et al., 2014;
Kulkarni et al., 2015).
A main difference between both papers is their way of solving the
misalignment of vectors trained on different corpora, or in this case,
diachronic sub-corpora for different years (see Section 2.5). Kim et al.
(2014) trained models continuously, i.e., the word vectors for each
time span (e.g., the year 1901) were initialized with the corresponding
word vectors of the previous time span (e.g., the year 1900). In
contrast, Kulkarni et al. (2015) trained models for each time span
independently before aligning them.

4.3.1. Experimental Setup

Following the studies by Kim et al. (2014) and Kulkarni et al. (2015),
we used a sub-corpus based on GBF and variations of their param-
eter choices. Kulkarni et al.’s protocol operates on all 5-grams in
sub-corpora spanning five consecutive years (e.g., 1900–1904) and
trains models independently of each other. In contrast, Kim et al.
(2014)’s protocol trains on sub-corpora sampled to a uniform size of
10M 5-grams for each year from 1850 on in a continuous fashion,
with years before 1900 used for initialization only. This constant size
is achieved with a combination of under-sampling and over-sampling,
as most years before 1880 do not achieve 10M entries (see also Figure
3.4 for corpus size per year). A comparison based on all years in the
GBF would require several CPU years for training, thus we conducted
an analysis on models for the beginning of the 20th century, i.e., 1900
for sample-based experiments and 1900–1904 for non-sampled ones
(see Table 4.2 for size information). This choice was made since
researchers can be assumed to be aware of current word meanings,
making correct judgments on initial word semantics more important.
We used the Python-based Gensim9 SG implementation, which was
easily modified for continuous training.10 We trained11 SGNS and

8 Iterations over the entire training set, also known as ‘epochs’.
9 https://radimrehurek.com/gensim/ [Accessed May 28th 2019].

10 Code for experiments available from: https://github.com/JULIELab/

hellrich_latech2016 [Accessed May 28th 2019].
11 200 dimensions, symmetric 4 word context window, minimum frequency of

10 and 5 negative samples for SGNS.

https://radimrehurek.com/gensim/
https://github.com/JULIELab/hellrich_latech2016
https://github.com/JULIELab/hellrich_latech2016
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SGHS12 word embedding models. The threshold t for probabilistic
downsampling of frequent words as well as the learning rate a were
chosen in accordance with the studies by Kim et al. (2014) and
Kulkarni et al. (2015) to be t = 10−3 and a = 0.01 for sampled
sub-corpora, respectively t = 10−5 and a = 0.025 for the non-sampled
sub-corpus. The learning rate is reduced during each iteration (down
to 0.0001 for Gensim). Kim et al. (2014) did reset its value after
each iteration, whereas Kulkarni et al. (2015) did not. We followed
Kim et al. (2014)’s decision, as not resetting the learning reduces the
impact of all iterations after the first.
Training was repeated to generate three models each for three pro-
tocols, i.e., training on the non-sampled 1900–1904 GBF, continuous
training on sampled 1850–1900 GBF with all models trained on the
same samples, and continuous training on sampled 1850–1900 GBF
with all models trained on independent samples.
Training for each sub-corpus was repeated for 10 iterations, unless
convergence was achieved before. Convergence was defined as the
average cosine c between all corresponding word embeddings before
and after a training iteration is 0.9999 or higher. The average cosine ci
for the ith iteration (i > 1) can be defined with a matrix W containing
word embedding vectors (normalized to length 1) for words from a
vocabulary of size V for each iteration i as:

ci :=
1

V

V∑
v=1

Wv, i ·Wv, i−1 (4.3)

Accuracy was evaluated with the analogy test set developed at Google
(Mikolov et al., 2013a), values equaling the percentage of correctly
solved analogies. This test set is based on present-day English lan-
guage and world knowledge, but it should allow for a comparison of
models trained on older texts. Reliability was measured with the
percentage based r@n approach (see Section 4.1) with 1 ≤ n ≤ 5.
All words contained in any model for a corpus were used as anchor
words. For anchor words not contained in a model, as can be the case
for comparisons between different samples, ∅ was used as the set of
most similar words.

12 Kim et al. (2014) did not specify a SG variant, whereas Kulkarni et al. (2015)
specified SGHS.
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4.3.2. Results

Table 4.1 provides a general overview of the outcome of different
training protocols. A first important observation is both accuracy and
reliability being equal or higher for SGNS than for SGHS under all
training protocols. In addition, reliability is higher between models
trained on the same 10M sample than between models trained on
the non-sampled corpus. However, if different samples are used—as
during the comparison of independently reproduced experiments—
reliability is dramatically lower for sample based approaches. Thus, a
non-sampled approach (as used with SGHS by Kulkarni et al. (2015))
provides superior reliability in real word scenarios.
We also performed a more detailed analysis of models trained inde-
pendently on a non-sampled 1900–1904 sub-corpus to quantify the
influence of word frequency, ambiguity and the number of training
iterations. Figure 4.1 shows the influence of word frequency, SGNS
being overall more reliable (by r@1), especially for words with low or
medium frequency. 21 exemplary words reported to have undergone

Training protocol
Reliability r@n

Accuracy
1 2 3 4 5

indep.

SGNS
non-sampled 0.40 0.41 0.41 0.40 0.40 0.38
same sample 0.45 0.48 0.50 0.51 0.52 0.25
different samples 0.09 0.10 0.10 0.10 0.10 0.26

SGHS
non-sampled 0.33 0.34 0.34 0.34 0.34 0.28
same sample 0.38 0.40 0.42 0.42 0.43 0.22
different samples 0.09 0.09 0.10 0.10 0.10 0.22

cont.
SGNS

same sample 0.54 0.55 0.56 0.56 0.57 0.25
different samples 0.21 0.21 0.22 0.22 0.22 0.25

SGHS
same sample 0.31 0.32 0.32 0.32 0.33 0.22
different samples 0.12 0.13 0.13 0.13 0.13 0.23

Table 4.1: Analogy accuracy and r@n reliability for training with
different parameters and algorithms for both independent and
continuous training. Standard deviation for accuracy ±0, except for
independently trained SGHS where it is ±0.01. Reliability is based
on the evaluation of all lexical items, thus no standard deviation is
given.
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Figure 4.1: Influence of frequency percentile on r@1 reliability for
models trained independently for 10 iterations on 1900–1904 GBF.
Words previously reported to have changed during the 20th century
fall into the rank range marked by vertical lines.

semantic changes in related work13 belong to the highlighted 89–99
frequency percentile. Only for such high-frequency words does SGHS
perform similar or slightly better. The dip in reliability for medium
frequency words is further explored in Section 4.4.2.
Entries in a lexical database (here WordNet by Fellbaum (1998))
can be employed to measure the effect of word ambiguity on reliabil-
ity.14 The number of senses (i.e., WordNet synsets) seems to have
little effect on r@1 reliability for SGNS, whereas the reliability of
SGHS is lower for words with a low number of senses, as shown in
Figure 4.2.
Both, reliability and accuracy, depend on the number of training
iterations, as shown in Figure 4.3. There are diminishing returns
for SGHS with reliability staying constant after 5 iterations, while
SGNS increases in reliability with each iteration. However, both

13 Kulkarni et al. (2015) compiled the following list based on prior work
(Gulordava & Baroni, 2011; Jatowt & Duh, 2014; Kim et al., 2014; Wijaya &
Yeniterzi, 2011): card, sleep, parent, address, gay, mouse, king, checked, check,
actually, supposed, guess, cell, headed, ass, mail, toilet, cock, bloody, nice and guy.

14 We used WordNet 3.0 and the API provided by the Natural Language
Toolkit (Nltk): http://www.nltk.org [Accessed May 28th 2019].

http://www.nltk.org
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methods achieve maximum accuracy after only 2 iterations, with
continued training being harmful for SGNS performance.
Our overall result was a first warning to mistrust SG models as a
novel corpus linguistic method. The training protocol by Kulkarni
et al. (2015) appeared to be somewhat more reproducible than that
of Kim et al. (2014). It was thus recommended by us to be used in
further studies (Hellrich & Hahn, 2016a).
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Figure 4.2: Influence of ambiguity (as number of WordNet synsets)
on r@1 reliability for models trained independently with 10 iterations
on 1900–1904 GBF.
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Figure 4.3: Influence of the number of iterations over training data
on r@1 reliability, for 1900–1904 GBF.
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4.4. A Multilingual View on SG Reliability

Follow-up experiments concern the accuracy and reliability of SG
word embeddings trained not only on English texts, but also on
German ones. We also widened our comparison to include both recent
(2005–2009) and historical (1900–1904) texts. The general design of
these experiments follows Kulkarni et al. (2015), i.e., embeddings are
trained independently on non-sampled sub-corpora of GBF and GBG.
Results confirm SG’s fundamental lack of reliability and provided a
first overview of the impact of normalization on word embeddings
trained on historical German texts.

4.4.1. Experimental Setup

The training itself follows the approach described for the Kulkarni
et al. (2015) protocol in Section 4.3.1, yet with an extended list of
sub-corpora.15 For both the 1900–1904 and the 2005–2009 period we
trained three models each on GBF, GBG and a normalized GBG.
Normalization was achieved by generating a list of all types in GBG
and applying CAB,16 a tool developed for the normalization of the
DTA (Jurish, 2013). The resulting mappings between types and the
appropriate modern lemmata, e.g., archaic and inflected medicinische
to medizinisch, were then applied to the German sub-corpora in a
pre-processing step. Normalization strongly reduces the number of
types, as shown in Table 4.2. The typological contrast between both
languages is especially clear for the 1900–1904 sub-corpora. They are
very close in size, but without normalization German has 39% more
types, whereas normalized German has 10% less than English. See
also Figure 3.4 for general corpus size per year.
We also found the convergence criterion by Kulkarni et al. (2015)
(see Equation 4.3) and our policy of resetting the learning rate after
each iteration to interfere with each other, rendering the criterion
ineffective. We thus introduced a new convergence measure ∆c which
we tracked to find a suitable threshold for potential follow-up exper-

15 Code for experiments available from: https://github.com/JULIELab/

hellrich_coling2016 [Accessed May 28th 2019].
16 http://www.deutschestextarchiv.de/demo/cab/ [Accessed May 28th

2019].

https://github.com/JULIELab/hellrich_coling2016
https://github.com/JULIELab/hellrich_coling2016
http://www.deutschestextarchiv.de/demo/cab/
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iments. It is based on the change of ci during subsequent iterations i
(i > 2):

∆ci := ci − ci−1 (4.4)

As in Section 4.3, we measured reliability with r@n between three
models, yet we also used word similarity based accuracy in addi-
tion to analogy based one. Similarity based accuracy was defined
as Spearman’s rank correlation coefficient between human similarity
judgments (from a test set) and word similarity according to a SG
model (cosine between word embeddings) between pairs of words.
The main benefit of this approach is the existence of suitable test
sets for both English and German in the form of WordSim-353 and
Gur350 (see Section 2.4). Test pairs with words not modeled for a
sub-corpus were ignored during evaluation.

Language Time Span 5-grams Types

English 1900–1904 143M 80k
English 2005–2009 4,658M 216k

German
1900–1904 135M

111k
Normalized German 72k

German
2005–2009 546M

243k
Normalized German 179k

Table 4.2: Number of 5-grams and types contained in the GBF and
(normalized) GBG sub-corpora used here.

4.4.2. Results

Table 4.3 shows the overall similarity accuracy and r@1 reliability of
our SG models, which allows for the following observations:

1. Both accuracy and reliability are higher for SGNS than for
SGHS for all tested combinations of sub-corpora and time spans
when trained for 10 iterations.

2. If only one iteration is used—as in many other experimental
setups reported in the literature—there is little difference in
accuracy while SGHS is clearly better in terms of reliability.
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3. Accuracy is higher for 2005–2009 than for the 1900–1904 inter-
val, with the exception of non-normalized GBG, probably due
to temporal currency (see page 46) and larger size.

4. Normalization of German increases accuracy, but slightly de-
creases reliability.

Analogy accuracy could (for lack of test data) only be measured for
GBF. Here we observed no negative effect of multiple iterations, but
a more pronounced gap between algorithms. For example, 36% of
all analogies were correct for SGNS and only 27% for SGHS after
one iteration on the 1900–1904 sub-corpus, respectively 51% and 35%
after one iteration on the 2005–2009 sub-corpus.
Like in Section 4.3, we also investigated the influence of several factors
(e.g., frequency) in more detail, focusing on normalized GBG due to
the overall similar performance and higher suitability for diachronic
comparisons. We observed the same trends as before, e.g., the re-
liability for different numbers n of most similar words being very
similar for a given combination of algorithm, sub-corpus and number
of iterations. Figure 4.4 illustrates this for SGNS trained on the
1900–1904 GBF sub-corpus.
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Figure 4.4: Effect of the number n of most similar words on r@n
reliability for SGNS trained on 1900–1904 GBF.
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Word frequency was again linked with reliability, models being less
reliable for medium frequency words than for high or low frequency
ones. This effect was more pronounced for English than German, as
shown in Figures 4.5 and 4.6. SGNS was more reliable than SGHS,
especially for words with low or medium frequency.
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Figure 4.5: Influence of frequency percentile on reliability after
training for 10 iterations on 1900–1904 and 2005–2009 GBF.
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Figure 4.6: Influence of frequency percentile on reliability after
training for 10 iterations on normalized 1900–1904 and 2005–2009
GBG.
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Figure 4.7: Number of co-occurrences (indicated by shade; only values
above mode shown) between words and context words per frequency
percentile for 1900–1904 GBF.

We assume the relatively low reliability for medium frequency English
words to be caused by the pattern of word co-occurrences in the
underlying corpus.17 As shown in Figures 4.7 and 4.8, medium fre-
quency words in GBF have fewer co-occurrences with low-frequency
words than those in the normalized GBG. This might result in a lack
of specific contexts for these words during training and thus reduce
embedding quality.
Ambiguity was also again linked with r@n reliability. In addition
to WordNet (Fellbaum, 1998) we also used GermaNet18 (Kunze
& Lemnitzer, 2002) for German words. Highly ambiguous English
words had better r@n, as shown in Figure 4.9. This effect was clearly

17 Co-occurrences were counted with the hyperwords based ngrams2counts
tool: https://github.com/hellrich/hyperwords/blob/master/hyperwords/

ngram2counts.py [Accessed May 28th 2019].
18 We used GermaNet 11.0 and the pygermanet API [Accessed May 28th

2019]: https://pypi.python.org/pypi/pygermanet

https://github.com/hellrich/hyperwords/blob/master/hyperwords/ngram2counts.py
https://github.com/hellrich/hyperwords/blob/master/hyperwords/ngram2counts.py
https://pypi.python.org/pypi/pygermanet
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Figure 4.8: Number of co-occurrences (indicated by shade; only values
above mode shown) between words and context words per frequency
percentile for normalized 1900–1904 GBG.

reduced for German, as Figure 4.10 reveals. This counter-intuitive ef-
fect for English seems to be caused by the low ambiguity of infrequent
words as results become more uniform when the analysis is limited
to high frequency words—possibly due to typological differences.
Model reliability and accuracy depend again on the number of train-
ing iterations, as shown in Figures 4.11 and 4.12 for English, respec-
tively normalized German. For both languages and time spans SGNS
outperforms SGHS when training lasts for a sufficient number of
iterations. The number of necessary iterations for SGNS to become
superior seems to be linked to both language and corpus size, as it
is lower for 2005–2009 than for 1900–1904 data. While reliability
continues to increase for each subsequent iteration for SGNS, there
are clear diminishing returns and even regression for SGHS.
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Figure 4.9: Influence of ambiguity (measured by the number of
WordNet synsets) on r@1 reliability for models trained for 10
iterations on 1900–1904 and 2005–2009 GBF.
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Figure 4.10: Influence of ambiguity (measured by the number of
GermaNet synsets) on r@1 reliability for models trained for 10
iterations on normalized 1900–1904 and 2005–2009 GBG.
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Figure 4.11: r@1 reliability as influenced by the number of training
iterations for 1900–1904 and 2005–2009 GBF.
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Figure 4.12: r@1 reliability as influenced by the number of training
iterations for normalized 1900–1904 and 2005–2009 GBG.
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To test for potential overfitting, we analyzed whether similarity ac-
curacy was influenced by the number of iterations. Figures 4.13 and
4.14 show the results for English and normalized German, respec-
tively. Note, that accuracy was assessed on a test set for modern-day
language, limiting its validity. Accuracy also shows SGNS to benefit
from multiple iterations, especially for smaller corpora. The biggest
corpus (i.e., English Fiction 2005–2009) shows a slight regression in
accuracy after more than 5 training iterations.
Overall both reliability and accuracy indicate SGNS with 4 to 6
iterations (6 being better for smaller and 4 being better for larger
corpora) to be the best SG option for training word embeddings for
our sub-corpora. Figure 4.15 shows ∆c (see Equation 4.4) averaged
over all three models between subsequent iterations, for both German
and English SGNS models. Few changes occur after 4–6 iterations,
which could be alternatively expressed as a ∆c of about 0.003. We
thus determined SGNS embeddings and convergence based on ∆c .
0.003 to be the least bad choice.
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Figure 4.13: Similarity accuracy as influenced by the number of
training iterations for 1900–1904 and 2005–2009 GBF. Error bars are
not displayed on purpose, due to constant values for each training
method.
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Figure 4.14: Similarity accuracy as influenced by the number of
training iterations for normalized 1900–1904 and 2005–2009 GBG.
Error constant for each training method, thus not shown.
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iteration and its predecessor) for SGNS models trained on 1900–1904
and 2005–2009 normalized GBG or GBF.
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4.5. Comparison of Word Embedding Algorithms

Prior experiments focused on the reliability of SG models only, due
to their popularity in diachronic applications. In this experiment we
widened our examination to also include GloVe and SVDPPMI.

4.5.1. Experimental Setup

We used a data set consisting of all 645 German texts contained
in the DTA for the 19th century (57M tokens). This allowed us
to investigate reliability directly on a data set used for diachronic
studies. DTA texts are provided normalized, further pre-processing
consisted of casefolding and the removal of punctuation.
We trained three models each, now with three embedding algorithms,
i.e., SGNS, GloVe and SVDPPMI.

19 To increase reliability, we did
only downsample word context combinations for GloVe, but not for
SGNS and SVDPPMI, as the latter two canonically use probabilistic
downsampling—see Sections 2.3.2–2.3.4 for details on sampling in
these algorithms and Section 4.6 for the effects of downsampling
strategies on reliability.
Reliability was measured with r@n, accuracy was not collected as the
rather old and thematically mixed provenance of the corpus makes
test sets ill-suited. In contrast to previous experiments we used
frequent nouns as anchor words instead of all modeled words. Re-
liability values are thus somewhat more optimistic and should match
behavior for those high frequency words often studied in diachronic
investigations.

4.5.2. Results

Overall, SVDPPMI provided perfect reliability, while the other two
embedding methods lacked in reliability. Table 4.4 shows the 1st

to 5th most similar words for Herz as an example for the results of
lacking reliability. The SGNS models diverge strongly, e.g., the first
model finds schmerzen ‘to pain’ to be the most similar word, while
the other two do not list it among the 5 most similar words. GloVe

19 300 dimensions, 5 word symmetric context window, minimum frequency
threshold 5. 5 negative samples, one iteration (default) as well as 10 threads
for SGNS. 8 Threads, 50 iterations (far more than for SGNS is common) for
GloVe. Default learning rates.
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appears to be more reliable, as all models agree on the first to third
most similar words.
We also performed a quantitative analysis with different anchor words
and various values of n for r@n. Figure 4.16 shows the reliability
for each algorithm evaluated against the 1000 most frequent nouns
in the DTA for r@n with 1 ≤ n ≤ 10. High values of n had a
small positive effect on the reliability of SGNS and GloVe. A small
inverse effect can be observed when the number of the most frequent
nouns is modified while keeping a constant value of n, as displayed in
Figure 4.17.
We could thus show GloVe to be affected by the same problems
as SGNS and SVDPPMI (without downsampling) to be perfectly
reliable. Hence, we recommended it in Hellrich & Hahn (2017a) and
used it for our own experiments in the next chapter.

Algorithm
Most Similar Word

1st 2nd 3rd 4th 5th

SGNS 1
schmerzen beklommen busen bluten herzen
[to pain] [anxious] [bosom] [to bleed] [to caress]

SGNS 2
bluten klopfend busen beklommen herzen

[to bleed] [beating] [bosom] [anxious] [to caress]

SGNS 3
herzen busen klopfend beklommen bluten

[to caress] [bosom] [beating] [anxious] [to bleed]

GloVe 1
gemüt mein seele liebe brust
[mind] [my] [soul] [love] [chest]

GloVe 2
gemüt mein seele brust liebe
[mind] [my] [soul] [chest] [love]

GloVe 3
gemüt mein seele brust liebe
[mind] [my] [soul] [chest] [love]

SVDPPMI 1
busen fühlen liebe schmerzen menschenherz
[bosom] [to feel] [love] [pain] [human heart]

SVDPPMI 2
busen fühlen liebe schmerzen menschenherz
[bosom] [to feel] [love] [pain] [human heart]

SVDPPMI 3
busen fühlen liebe schmerzen menschenherz
[bosom] [to feel] [love] [pain] [human heart]

Table 4.4: Most similar words for Herz [heart] as provided by different
word embedding models. Words which all three models for an
algorithm determined to be the nth most similar one in bold.
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Figure 4.16: r@n reliability of word embedding algorithms for 1 ≤
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4.6. Downsampling and Reliability

Choosing between no downsampling, probabilistic downsampling and
weight-based downsampling (see Sections 2.3.2–2.3.4 as well as 2.1)
has a surprisingly large influence on the reliability of word embedding
algorithms. Whereas Antoniak & Mimno (2018) used probabilistic
downsampling for high frequency words and found SVDPPMI to be
less reliable than alternatives, we conducted the experiments in the
preceding section without downsampling and found it to be perfectly
reliable.
We compared the influence of different downsampling strategies on
word embedding reliability and accuracy. Our tests spanned three
algorithms (SVDPPMI as well as GloVe and SGNS) and two English
corpora of different sizes. We used these corpora both unmodified as
well as bootstrap subsampled to simulate the arbitrary content selec-
tion in most corpora—texts could be removed or replaced with similar
ones without changing the overall nature of a corpus. Bootstrap
subsampling thus measures how trustworthy results are based on
some corpus and which problems arise even with a perfectly reliable
embedding method.
We added support for weighting-based downsampling to SGNS and
SVDPPMI. The latter approach, i.e., our novel SVDwPPMI(see also
page 28), outperforms prior SVDPPMI variants. It uses fractional
co-occurrence counts (according to sampling factors) to populate the
word-context matrix before PPMI values are calculated and SVD is
applied. Our weighted SGNS variant processes each word context
pair (instead of discarding some as in probabilistic downsampling)
and lowers the learning rate according to the appropriate sampling
factors for the pair.

4.6.1. Experimental Setup

We used two different corpora for our analysis, i.e., the 2000s decade
of COHA and an English News Crawl Corpus (NEWS) collected for
the 2018 WMT Shared Task.20 The former contains 14k texts and
28M tokens, while the latter has 27M texts and 550M tokens. Results
on COHA are directly applicable for diachronic research, whereas the

20 http://www.statmt.org/wmt18/translation-task.html [Accessed May
28th 2019].

http://www.statmt.org/wmt18/translation-task.html
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larger NEWS corpus serves to gauge the performance of all algorithms
in general applications.
Both corpora were tokenized, transformed to lower case and also
stripped from punctuation. Bootstrap subsampling was performed
on the level of the constituent texts of each corpus, e.g., individual
news articles. For a corpus with n texts we drew n samples with
replacement. Texts could thus be drawn multiple times, but only
one copy was kept, roughly reducing corpora to 1− 1/e ≈ 2/3 of their
original size.
We trained ten21 models with all algorithm variants each on the
original corpora as well as on the independently bootstrap subsampled
corpora. We measured similarity accuracy with Spearman’s rank
correlation between cosine and human word similarity judgments
in MEN, MTurk, SimLex-999 and WordSim-353 (see Section 2.4).
We also measured analogy accuracy as the percentage of correctly
solved analogies (using the state-of-the-art multiplicative Equation
2.11) from two test sets developed at Google and Microsoft Research
(Mikolov et al., 2013a,c).
Following Antoniak & Mimno (2018) and aiming to establish a com-
mon standard, we switch our reliability evaluation from r@n to j@n—
this should have little effect on overall rankings of algorithms as ex-
plained in Section 4.1. Reliability was measured as the j@10 Jaccard
coefficient with the 1k most frequent words in each corpus (before
bootstrap subsampling) as anchor words. We did not calculate j@10
between all 10 models for each combination of corpus, algorithm and
downsampling strategy. Instead, we calculated j@10 between subsets
of 9 models. 10 such unique subsets exist, allowing us to perform
significance tests. The experimental code is available via GitHub.22

4.6.2. Results

Results for all tested combinations of corpora, algorithms and down-
sampling strategies are provided in Tables 4.5–4.8. Accuracy for
smaller corpora (which includes bootstrapped ones) is lower than for

21 500 dimensions, symmetric 5 word context windows, minimum frequency
threshold 50 for COHA, 100 for NEWS. Frequent word downsampling thresholds
of c = 100 and t = 10−4 where applicable. 5 negative samples for SGNS. Default
learning rate, number of threads and number of iterations for each algorithm.

22 https://github.com/hellrich/embedding_downsampling_comparison

[Accessed May 28th 2019].

https://github.com/hellrich/embedding_downsampling_comparison
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larger ones.23 Also expected is the lower reliability for bootstrapped
corpora, which is due to the difference in training material.
SGNS did seldom benefit from our modifications. Avoiding down-
sampling improved analogy (but not similarity) accuracy on COHA,
while it was slightly worse on the larger NEWS corpus. Weight-based
downsampling decreased accuracy, however it did benefit reliability,
even when compared to training without downsampling.
SVDwPPMI provided perfect reliability in all non-bootstrapped sce-
narios. While its reliability in bootstrapped scenarios is slightly
behind GloVe on COHA (0.329 instead of 0.33; difference significant
with p < 0.05 by two sided t-test), its accuracy is higher. Notably, its
reliability on the bootstrapped NEWS corpus (0.635) is nearly as high
as that of probabilistic SGNS (0.652) and GloVe (0.679) trained
on the non-bootstrapped corpus!
The overall accuracy of SVDwPPMI is about equal to the widely used
probabilistic SGNS algorithm, i.e., it achieves higher values in 11
out of 24 measurements and a draw in 1. Its accuracy is higher than
that of GloVe in 19 measurements and identical in 1. SVDwPPMI

seems to benefit slightly from smaller corpus sizes (as for COHA),
especially when compared with GloVe. This matches observations
on embedding algorithms and corpus size made by Sahlgren & Lenci
(2016).
The only prior option for perfectly reliable SVDPPMI embeddings,
i.e., using no downsampling at all as in Hellrich & Hahn (2017a), is
beaten by SVDwPPMI in 20 out of 24 accuracy measurements with a
draw in 3 out of 24. We could further confirm these results (on accu-
racy) by using the Friedman test (confirming the general existence of
differences with p < 10−6) followed by pairwise Wilcoxon rank-sum
test with Holm-Šidák correction (see Demšar (2006)). We also found
SVDwPPMI to be significantly better than SVDPPMI without any
downsampling as well as GloVe (for both p < 10−3), but not better
than SGNS (p = 0.48).24

23 Standard deviations for accuracy are overall small (most around 0.01),
with both bootstrapping and probabilistic sampling leading to increases (up to
0.03), and thus not listed in the tables. However, our comparisons are based on
statistical tests and do thus use this information.

24 Due to the correction, α = 0.0125 was used (instead of the common 0.05) to
determine significance. Bernd Kampe performed this part of the analysis.
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Overall, using weight-based downsampling seems to be not worth-
while for SGNS, but well-suited for SVDPPMI. The sometimes pos-
itive effect of probabilistic downsampling might be due to noise in
neural networks working akin to dropout, i.e., it prevents overfitting
and increases robustness (Goodfellow et al., 2016, p. 237). We assume
that the overall low performance of weight-based downsampling for
SGNS is not caused by vector updates becoming to small, as changing
the learning rate could not compensate it during a limited pre-test.
We deem SVDwPPMI to be the best embedding method for corpus
linguistic (diachronic) research, since it performs as well as or better
than other SVDPPMI variants or SGNS (and far better than GloVe)
while providing superior reliability.
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4.7. Comparison of SGNS implementations

Three different implementations of SGNS were used in the previous
experiments, i.e., gensim, hyperwords and word2vec.25 These
differ in how they implement randomness for vector initialization and
downsampling, i.e., if they use a fixed or variable seed for random
number generation (see Section 4.2). Initial word vectors are gener-
ated based on a fixed seed in hyperwords and word2vec and thus
always identical for the same vocabulary and number of dimensions,
whereas gensim allows for both a fixed and a variable seed. The same
is true for downsampling, but hyperwords can easily be modified
to use a variable seed (e.g., done in Section 4.6.1). hyperwords’
downsampling happens in a single thread and will thus always draw
the same samples from a given corpus if a fixed seed is used, whereas
in gensim and word2vec sampling is done with multiple threads,
i.e., varies even with a fixed seed, as long as multiple threads are
used. Also, word2vec uses a separate random number generator
for each thread, whereas gensim uses a shared one. Fixed seeds for
initialization and downsampling can be expected to result in higher
reliability values as they make training more deterministic. Due to
the non-deterministic effect of multi-threading (see page 61), using
fewer threads should also increase reliability. Using a single thread
and fixed seeds should make experiments deterministic and result in
perfect reliability.
Accuracy should be very similar for all implementations, but imple-
mentation details might prove to be crucial. hyperwords reduces
the learning rate according to the number of processed word-context
pairs. In contrast, word2vec reduces the learning rate based on
the number of processed words. gensim, finally, only updates the
learning rate after finishing an iteration over all examples.

4.7.1. Experimental Setup

We measure the differences in accuracy and reliability according to the
general training and evaluation setup described for the NEWS corpus
in Section 4.6.1, using 5 iterations and 1, 2, 5 or 10 threads for all

25 Using Mikolov’s most recent version from https://github.com/tmikolov/

word2vec for the latter [Accessed May 28th 2019].

https://github.com/tmikolov/word2vec
https://github.com/tmikolov/word2vec
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algorithms. The experimental code is available via GitHub.26 Our
experimental environment might influence results, as experiments
were performed on a cluster27 also providing other services.

4.7.2. Results

Tables 4.9 and 4.10 list the accuracy by similarity and analogy as
well as the j@10 reliability for all three tested implementations and
differing numbers of threads. We could also explore some combi-
nations of fixed and variable seeds for gensim and hyperwords.28

Accuracy values for gensim and word2vec are very similar and
mirror those achieved with an identical setup in Section 4.6.2. The
number of threads causes some minor changes in accuracy for almost
all algorithms. However, word2vec with a single thread performs
worse than all other tested combinations.
Using only a single thread fixed seeds lead to perfect reliability for
all three implementations (the 0.999 for hyperwords is caused by
one of the anchor words systematically not being processed). A high
number of threads is negatively correlated29 with reliability if at least
one seed is fixed. However, this seems to be algorithm-dependent
and involves some kind on non-linear saturation, i.e., there is little
difference between 5 and 10 threads. The number of threads seems to
have no effect if all seeds are variable, with hyperwords being less
reliable than gensim in this case. These lowest measured reliability
values should be most representative for the underlying algorithm, as
fixed seeds are effectively an additional parameter—recall Section 4.2
for a discussion of such fake reliability.
We deem these difference between implementations troubling, as they
might mislead researchers focusing on only one. Further experiments,
e.g., modifying word2vec to use variable seeds, are out of scope
here, since SVDwPPMI was already shown to be superior for our use
case.

26 https://github.com/hellrich/sgns_implementation_comparison [Ac-
cessed May 28th 2019].

27 With 16-core® Xeon® E5-2650 v2 CPUs.
28 Further changes to the underlying implementations would allow to test all

combinations of fixed and variable seeds for each implementation, but the point
of this comparison is gathering insight into these implementations as they are,
not as they could be.

29 For example, Pearson’s r = −0.66 for word2vec.

https://github.com/hellrich/sgns_implementation_comparison
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4.8. Discussion

Overall, our experiments lead to a troublesome conclusion: Neither
SG(NS) nor GloVe can provide reliable word embeddings. They are
thus ill-suited for an increasingly popular form or corpus linguistic
research, where word meaning is determined via most similar words.
This can be seen as part of a general reproducibility crisis affecting
artificial intelligence research, which hampers comparisons and thus
stifles progress (Henderson et al., 2018; Hutson, 2018; Reimers &
Gurevych, 2017).
Luckily, singular value decomposition based word embeddings—and
especially our novel SVDwPPMI—are a reliable solution for corpus
linguistic studies. Their results are highly reproducible, resulting in
identical embeddings for repeated training on one corpus. They are
still at least as reliable as alternative embedding methods if corpora
are modified by bootstrap subsampling. Reliability on large bootstrap
subsampled corpora approaches that of other embedding methods on
un-modified corpora. Reliability problems could also be mitigated
by using some kind of ensemble (Antoniak & Mimno, 2018), as we
already briefly suggested in Hellrich & Hahn (2016b), however this
would lead to increased computational demands.
Word embedding reliability has, to the best of our knowledge, only
recently become of interest to other researchers.30 Few studies are
comparable with our own work:
Antoniak & Mimno (2018) used an approach similar to Hellrich &
Hahn (2017a) and compared SGNS, GloVe, LSA (Deerwester et al.,
1990) and a form of SVDPPMI (using probabilistic downsampling with
a variable seed) models with j@20. Their assessment was based on
three domain specific corpora (news paper articles, legal texts and
internet forums) and a large number of models (50), but only a small
number of anchor words (20). They used not only their corpora as-is,
but also shuffled and bootstrap subsampled versions. They found
GloVe to be most reliable and SVDPPMI to be worst—as we showed
in in Section 4.6 their assessment of SVDPPMI is only due to their
downsampling strategy.

30 Several studies use ‘stability’ instead of ‘reliability’. Both differ in their focus
on the variance of vector representations or the resulting variance in similarity
judgments, respectively.
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Wendlandt et al. (2018) compared embeddings trained with different
algorithms, parameters (e.g., 50–800 dimensions) and even corpora
with a r@10 metric. Their work is thus important for the gen-
eral study of word embeddings, but less relevant for their suitability
as a corpus linguistic tool. They compared SGNS, GloVe and a
proto form of SVDPPMI embeddings (Bullinaria & Levy, 2007), using
corpora from two domains, i.e., newspaper articles and parliament
records. With the 2.5k words present in all corpora as anchor words,
they found GloVe to be most reliable, closely followed by their SVD
based embeddings. Factors with a high impact on reliability were the
order in which training examples were processed, the part-of-speech of
an anchor word and the domain a model was trained on. In contrast
to our results from Sections 4.3 and 4.4 they found word frequency
to have little impact on reliability—this might be due to a probably
overall high frequency of their anchor words, which had to be present
in all corpora.
Pierrejean & Tanguy (2018a) used three corpora, one balanced and
two from the scientific domain, to assess the reliability of SGNS with
a variant of r@n. They used 5 models and all adjectives, nouns and
verbs with at least 100 occurrences as anchor words. A novel result
is their identification of clusters of words with high reliability.
Finally, Chugh et al. (2018) used three relatively small corpora to
investigate the effect of embedding dimensionality on reliability.
Detailed comparisons between these studies and our own results are
hampered by differences in hyperparameters (such as dimensionality),
anchor word selection and corpus choice. Most notably, all corpora
used in other reliability studies were relatively small, ranging from
only 1.2M tokens in Chugh et al. (2018)31 to 100M in Pierrejean &
Tanguy (2018a). However, despite these differences, all studies agree
on the existence of a word embedding reliability problem.
There are some additional studies touching the reliability of word
embeddings which are less directly comparable, but still relevant.
Heimerl & Gleicher (2018) explored novel visualizations for comparing
different representations of a word due to language change or lacking
reliability. Fares et al. (2017) suggested creating repositories of word
embeddings for use in subsequent studies to increase comparability.
While we welcome this idea in general—and provide such a repository
ourselves for the vectors used in JeSemE (see Section 5.2)—it would

31 Size information from personal communication.
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just mask the arbitrary nature of SGNS and GloVe embeddings
and lead to the problems discussed for fixed seed values in Section
4.2. Tahmasebi (2018) used j@10 in a study on word change in a
Swedish historical newspaper collection. They trained SGHS models
and compared the most similar words for 11 manually selected anchor
words between successive years. They thus trained only one model
per sub-corpus and not multiple as in the studies above. They caution
using word2vec, especially for studies interested in finer details such
as sense change. Pierrejean & Tanguy (2018b) explored the impact
of different corpora and parameters (such as dimensionality) on the
most similar words provided by SGNS and CBOW word embeddings.
They used only one model per corpus-parameter combination and are
thus likely to measure artifacts caused by inherently low reliability—
which is strange given their work on this phenomenon in Pierrejean &
Tanguy (2018a). Finally, Dubossarsky et al. (2017) investigated the
validity of several high-ranking publications investigating language
change in general as already discussed in Section 2.5.3.
Overall, we believe it prudent to use SVDwPPMI in embedding-based
corpus linguistic research wherever possible, i.e., except for data sets
where the resulting word context matrix is too large and a streaming
approach must be used. In those cases, and also if some kind of
random sampling is performed, we recommend providing some form
of reliability measurement. Given the results of Dubossarsky et al.
(2017) it might also be interesting to explore non-word embedding
approaches, but most studies show these to under-perform on seman-
tic tasks. Further methodological studies as well as case-studies on
specific words seem currently more prudent than large scale investi-
gations on lexical change in general (see Section 2.5.3).





Chapter 5

Observing Lexical Semantic Change

This chapter contains our1 work on lexical semantic change affecting
both denotation and emotional connotation.
Section 5.1 describes joint work with Sven Buechel2 on modeling
historical word emotions. Its results were partially presented at the
LT4DH workshop (Buechel et al., 2016), the Digital Humanities con-
ference (Buechel et al., 2017) and the LaTeCH-CLfL workshop (Hell-
rich et al., 2019a).
Section 5.2 describes JeSemE, the Jena Semantic Explorer, a website
for visualizing semantic change based on several diachronic corpora.
It was previously presented at ACL and COLING (Hellrich et al.,
2018a; Hellrich & Hahn, 2017b). It also utilizes results from Section
5.1 to model word emotions.
Finally, Section 5.3 contains two case studies using JeSemE. One
of these case studies, i.e., joint work with Alexander Stöger3 on in-
vestigating the history of science with distributional methods, was
previously presented at the DHd conference (Hellrich et al., 2018b).

1 Plural is used as experiments in this chapter were planned and published in
co-operation with my supervisor Professor Dr. Udo Hahn and in some cases also
Sven Buechel or Alexander Stöger (see next footnotes for details).

2 The general idea of predicting historical word emotions as well as the
adaptation of algorithms and the creation of test sets were developed jointly.
Background knowledge on word emotion modeling was provided by Sven Buechel,
who also conducted the analyses of emotions in texts from different domains and
points in time. Corpora and parameters for word embeddings were selected by
me.

3 Alexander Stöger provided background knowledge on the investigated
historical development as well as expert judgment on the validity of our results.
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We provide thus both a novel method and an easy-to-use tool for
diachronic studies. Our case studies demonstrate possible applica-
tions and their results indicate JeSemE to produce valid, or at least
plausible, results.

5.1. Historical Word Emotions

As discussed in Section 2.5, the meaning of words consists of both
denotation and connotation. Word embeddings do model both (Rothe
et al., 2016), but do not provide explicit access to either of them. Re-
search in psychology and computational linguistics makes it possible
to make the emotional connotation explicit.
This is highly relevant for studies in the (digital) humanities which try
to track emotions in historical texts. For example Acerbi et al. (2013)
and Bentley et al. (2014) observed long term trends in words express-
ing emotions in the Google Books corpus and could link those to
historical (economical) events, but their study relied on contemporary
word emotion information (and might also be influenced by sampling
problems in the underlying corpus (Pechenick et al., 2015)). Another
example is Kim et al. (2017) investigating emotions in literary texts to
find genre-specific patterns while also relying on (too) contemporary
word emotion information.
Our methods for temporal adaption are based on methods for ex-
panding word emotion lexicons. We were the first to perform such
an adaption with a fine-grained dimensional model (see below). Our
adaption was also the first to be evaluated against human expert
judgment, providing an indication of its validity. It was also the first
to operate on German data.

5.1.1. Related Work

Quantitative models for word emotions can be traced back at least
to Osgood (1953), who used questionnaires to gather human ratings
for words on a wide variety of dimensional axes including good–bad.
We use a dimensional model with three axes, i.e., Valence-Arousal-
Dominance (VAD; Bradley & Lang (1994)) as illustrated in Figure
5.1. In this model Valence encodes whether an emotion is positive
or negative, e.g., joy being more positive than fear, Arousal encodes
whether an emotion is connected with calmness or excitement, e.g.,
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Figure 5.1: VAD emotion space with position of basic emotions
(Ekman, 1992) for reference. Adapted from Buechel & Hahn (2016).

sadness being more calm than anger, and Dominance encodes the
perceived degree of control, e.g., fear making one feel less in control
than joy. Using categories, such as anger or sadness in the previous
examples, is an alternative approach already employed in the Gen-
eral Inquirer text analysis system (Stone & Hunt, 1963). The
so-called basic emotions (Ekman, 1992) form a prominent categor-
ical model. They are defined as cultural universals with links to
evolutionary biology (e.g., unique facial expression, present in other
primates). However, there is no agreement on which emotions are
basic emotions under these criteria, with Ekman (1992, p. 193) listing
twelve strong candidates and several more that might be covered
by a slightly relaxed definition. Polarity, an even simpler emotion
format, is very popular for applications known as sentiment analysis
or opinion mining (Pang & Lee, 2008; Turney, 2002). Here only two
categories—Positive and Negative—or a single positive–negative axis
(corresponding to VAD’s Valence dimension (Calvo & Kim, 2013)) is
used. The three-dimensional VAD is thus both extensive and elegant,
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Word Valence Arousal Dominance

rage 2.50 6.62 4.17
orgasm 8.01 7.19 5.84
relaxed 7.25 2.49 7.09

Table 5.1: Sample Valence-Arousal-Dominance (VAD) ratings from
the emotion lexicon by Warriner et al. (2013). The scales span the
interval of [1, 9] for each dimension, “5” being neutral.

especially as high-quality mappings between different representations
are possible when necessary (Buechel & Hahn, 2018a).
Word emotion information is collected (mainly by psychologists) in
word emotion lexicons—see Table 5.1 for an illustration of the struc-
ture of such a lexicon. For English, the Affective Norms of English
Words (Anew; Bradley & Lang (1999)) incorporate 1,034 words
paired with experimentally determined affective ratings using a 9-
point scale for Valence, Arousal and Dominance, respectively. War-
riner et al. (2013) provided an extended version of this resource (14k
entries) employing crowdsourcing. As far as German-language emo-
tion lexicons are concerned, Angst (Schmidtke et al., 2014) is ar-
guably the most important one for NLP purposes. It comprises 1,003
lexical entries and replicates Anew’s methodology very closely (see
Köper & Schulte im Walde (2016) for a more complete overview of
German VAD resources).
We aim to predict VAD values with a regression task to allow for a
fine-grained analysis. We do this by adapting algorithms for the ex-
pansion of emotion lexicons. Such algorithms use information on word
similarity (or even position in vector space) and a limited amount
of seed words with known emotions to predict emotions connected
with arbitrary words. More than a decade ago, Turney & Littman
(2003) introduced an algorithm which was frequently used or adapted
by others (Köper & Schulte im Walde, 2016; Palogiannidi et al.,
2016). It computes a sentiment score based on the association (by
PMI) of an unrated word to two sets of positive and negative seed
words, respectively. Bestgen (2008) presented an algorithm which
has been prominently put into practice to expand an existing VAD
lexicon (Bestgen & Vincze, 2012). Their method employs a k-Nearest-
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Neighbor methodology where an unrated word inherits the averaged
rating of the surrounding words. Rothe et al. (2016) presented a more
recent approach to polarity induction. Based on word embeddings
and a set of positive and negative paradigm words, they train an or-
thogonal transformation of the embedding space so that the encoded
polarity information is concentrated in a single vector component
whose value then serves as an explicit polarity rating. The algorithm
proposed by Hamilton et al. (2016a) employs a random walk within a
lexical graph constructed using word similarities. They outperformed
Rothe et al. (2016) in a comparison on small corpora and consider
their method especially suited for historical applications.4

Algorithms for bootstrapping word emotion information can also be
used to predict historical emotion values by using word similarity
based on historical texts. This was first done for polarity regression
with the Turney & Littman (2003) algorithm and a collection of three
British English corpora by Cook & Stevenson (2010). Jatowt & Duh
(2014) tracked the emotional development of words by averaging the
polarity of the words they co-occurred with (assuming the latter’s
polarity to be stable). Hamilton et al. (2016a) used their novel
random walk based algorithm for polarity regression on COHA. This
algorithm was also used by Généreux et al. (2017) to test the temporal
validity of inferred word abstractness, a psychological measure akin
to the individual VAD dimensions. They used both modern and
historical (1960s) psychological datasets rating the same words as gold
standards and found a strong correlation with predicted historical
abstractness.

5.1.2. Historical Emotion Gold Standard

In general, native speakers are the best option for acquiring a gold
standard lexicon of emotional meaning for any language or domain.
These are obviously not available for most historic varieties due to
the limited human lifespan (see also Section 2.5.4. We instead rely
on historical language experts for constructing our data set. The gold
standard consists of two parts, an English and a German one, with
100 words each. We recruited three annotators for German and two

4 However, the algorithm is sensitive to changes in its training material
and thus likely prone to artifacts, see README of https://github.com/

williamleif/socialsent [Accessed May 28th 2019].

https://github.com/williamleif/socialsent
https://github.com/williamleif/socialsent
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for English, all doctoral students (four at the graduate school “The
Romantic Model”) and experienced with interpreting 19th century
texts.
We selected high frequency words for the annotation to ensure high
quality of the associated word embeddings. The selection was done
by extracting adjectives, common nouns and lexical verbs from the
1830s COHA and the 1810–1839 DTA subcorpus. We then randomly
sampled 100 words out of the 1000 most frequent ones.
The rating process was set up as a questionnaire study following
designs from psychological research (Bradley & Lang, 1999; Warriner
et al., 2013). The participants were requested to put themselves
in the position of a person living between 1810 and 1839 (German)
respectively in the 1830s (English). They were then presented with
stimulus words and used the so-called self-assessment manikin (SAM)
to judge the kind of feeling evoked by these lexical items (Bradley &
Lang, 1994). SAM consists of three individual nine-point scales, one
for each VAD dimensions. Each of the 27 rating points is illustrated
by a cartoon-like anthropomorphic figure in addition to verbal anchors
for the low and high end of the scales, e.g., the rating point “9” of the
Valence scale representing “complete happiness”. The final ratings
for each word were derived by averaging the individual ratings of the
annotators.
We measured inter-annotator agreement (IAA) by calculating the
standard deviation for each word and dimension, thus constituting
an error-based score (lower is better). Deviations were averaged for
each individual VAD dimension first and then averaged again over
these aggregate values.
Table 5.2 shows the resulting IAA for each dimension. In comparison
with the lexicon by Warriner et al. (2013), our gold standard displays
higher rating consistency. This suggests that experts show higher
agreement, even when judging word emotions for a historical language
stage, than crowdworkers for contemporary language. The resulting
gold standards are available online.5

5 https://github.com/JULIELab/HistEmo/tree/master/historical_

gold_lexicons [Accessed May 28th 2019].

https://github.com/JULIELab/HistEmo/tree/master/historical_gold_lexicons
https://github.com/JULIELab/HistEmo/tree/master/historical_gold_lexicons
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Valence Arousal Dominance Average

goldEN 1.20 1.08 1.41 1.23
goldDE 1.72 1.56 2.31 1.86
Warriner 1.68 2.30 2.16 2.05

Table 5.2: Inter-annotator agreement for our English (goldEN) and
German (goldDE) gold standard, as well as the lexicon by Warriner
et al. (2013)—for comparison—for each VAD dimension, as well as
averaged over the three dimensions.

5.1.3. Algorithms and Adaptations

Our work employs three algorithms for inducing emotion lexicons, two
of which had to be adapted to deal with the more informative vec-
torial VAD representation instead of a binary (positive vs. negative
polarity) representation:

kNN The k-Nearest-Neighbor-based algorithm by Bestgen (2008)
which already supports vectorial input.

ParaSimNum An adaptation of the ParaSim algorithm by Tur-
ney & Littman (2003) which is based on the similarity of two
opposing sets of paradigm words and ill-suited for vectorial
input.

RandomWalkNum An adaptation of the RandomWalk algo-
rithm proposed by Hamilton et al. (2016a) which propagates
affective information of seed words via a random-walk through
a lexical graph. It cannot process vectorial input.

kNN sets the emotion values ê(w) of each word w to the average of
the emotion values of the n most similar seed words. Let e(s) map
a seed word to a three-dimensional vector corresponding to its VAD
value in our seed lexicon and nearest(w, n) map to a set of the n most
similar seed words s for a given word w:

êkNN(w, k) :=
1

k

∑
s∈nearest(w,k)

e(s) (5.1)
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ParaSim computes ê(w) by using the function sim(w, p) to measure
the similarity of a word w with a set of positive and negative paradigm
words (POS and NEG, respectively):

êParaSim(w) :=
∑
p∈POS

sim(w, p)−
∑

n∈NEG

sim(w, n) (5.2)

Let e(s) map to ‘1’ if word s ∈ POS and to ‘−1’ if s ∈ NEG, then
Equation 5.2 can be rewritten as:

êParaSim(w) :=
∑

s∈POS∪NEG

sim(w, s)× e(s) (5.3)

The adaptation to numerical input in ParaSimNum is achieved by
changing e(s) to map to a three-dimensional VAD vector for each
word in our seed lexicon L and normalizing the resulting value:

êParaSimNum(w) :=

∑
s∈L sim(w, s)× e(s)∑

s∈L sim(w, s)
(5.4)

RandomWalk propagates sentiment scores through a graph, with
vertices representing words and edge weights denoting word similarity.
The vector p ∈ R|V| (V being the set of words which make up the
lexical graph) represents the induced sentiment score for every word
in the graph. It is iteratively updated by applying the transition
matrix T (see Zhou et al. (2003) for more details):

p(t+1) = βTp(t) + (1− β)s (5.5)

Here s ∈ R|V| is the vector representing the seed sentiment scores
and the β-parameter balances between assigning similar scores on
neighbors and correct scores on seeds. The vector p is initialized
so that the i-th element pi = 1/|V|, whereas s is initialized with
si = 1/|S| (S being the set of seed words), if the corresponding word
wi is a seed word and 0, otherwise.
To obtain the final sentiment scores pfinal, the process is independently
run until convergence for both a positive and a negative seed set,
before the resulting values p+ and p− are normalized by performing
a z-transformation on:

pfinal :=
p+

p+ + p−
(5.6)



5.1. HISTORICAL WORD EMOTIONS 105

For RandomWalkNum, p and s are replaced by |V|× 3 matrices,
P and S. All entries of P are initialized with 1/|V|. For the positive
seed set, S is populated with the original VAD values of each word
in the seed lexicon and 0, otherwise. For the negative seed set all
values are inverted relative to the center of the numerical VAD rating
scales, e.g., for the examples in Table 5.1 the valence score of relaxed
is transformed from 7 to 3. In both cases S is then normalized so
that each column adds up to 1. Pfinal can than be calculated like pfinal

in the original algorithm.

5.1.4. Experimental Setup

Our experiments were intended to compare combinations of three
algorithms, i.e., kNN, ParaSimNum and RandomWalkNum, and
embedding types, i.e., SVDPPMI and SGNS. We also explored the
effect of seed lexicon size, as Hamilton et al. (2016a) used only a very
short list, whereas Cook & Stevenson (2010) used a large one.
The word embedding training follows Hamilton et al. (2016a). COHA
and DTA were preprocessed by using the lemmatization provided with
each corpus, removing punctuation and converting to lower case. We
then used hyperwords (Levy et al., 2015) to create both a SVDPPMI

and an SGNS model6 for three temporal slices, i.e., 1810–1839 DTA
as well as 1830s and 2000s COHA.
We tested kNN, ParaSimNum and RandomWalkNum both in a
synchronic and in a diachronic scenario. The synchronic scenario,
i.e., reconstructing Warriner’s contemporary emotion lexicon with
embeddings trained on recent language (2000s COHA), provides an
upper bound on algorithmic performance. In contrast, the diachronic
scenario tests directly how well predictions with embeddings trained
on historical language match our historical emotion gold standard.
For English, we used two different seed lexicons. The full seed lexicon
corresponds to all the entries of words which are present in Warriner’s
VAD lexicon and Anew (about 1,000 words). In contrast, the limited

6 We used 300 dimensions, a context window of up to four words (limited by
document boundaries, but ignoring sentence boundaries) and a minimum word
frequency threshold of 100. Eigenvectors were discarded and no negative sampling
was used for SVDPPMI. Word and context vectors were combined to create the
final embeddings.
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seed lexicon is restricted to the 19 words7 which were identified as
temporally stable by Hamilton et al. (2016a). For German, we tested
only a full seed lexicon, Angst, as most entries of the English limited
lexicon have no corresponding entries in Angst. Our evaluation uses
Pearson’s r between actual and predicted values for each affective
dimension (Valence, Arousal and Dominance) for quantifying perfor-
mance. Our values are thus not comparable with those of Généreux
et al. (2017), who used the rank based Spearman’s ρ.8

5.1.5. Results

Table 5.3 provides correlation (Pearson’s r) averaged over all VAD
dimension9 each seed lexicon, embedding method and induction al-
gorithm for our synchronic experiment. SGNS embeddings are worse
than SVD embeddings for both full and limited seed lexicons. SVDPPMI

embeddings seem to be better suited for induction based on the full
seed set, leading to the highest observed correlation with ParaSim-
Num. However, differences to the other algorithms are statistically
non-significant. Conversely, the results are clearer using the limited
seed set. Here, RandomWalkNum is significantly better than all
alternative approaches, but results are also far worse than those with
the full seed lexicon.
Table 5.4 provides the average values of these VAD correlations for
each seed lexicon, embedding method and induction algorithm for our
diachronic experiment. For English using the full seed lexicons, we
found r ≈ .35, with no significant difference between the different
approaches due to the small size of the gold standard. Notably,
the limited seed lexicon performed markedly weaker in every single
condition. This finding directly contradicts the claim by Hamilton
et al. (2016a) that small temporally stable seeds words are preferable
over larger and thus noisier ones. Results for German (using the full

7 One of the 20 words given by Hamilton et al. (i.e., hated) is not present in
the Warriner lexicon and was therefore omitted.

8 Some other studies on emotion lexicon expansion also used Kendall’s τ . We
found τ values to be consistent with r values during a pretest.

9 Performance is known to differ between VAD dimensions, i.e., Valence is
usually the easiest one to predict. For the full seed lexicon and the best induction
method, ParaSimNum with SVDPPMI embeddings, we found correlation values
between 0.679 for Valence, 0.445 for Arousal and 0.547 for Dominance.
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seed lexicon) are similar to those for English. However, the SNGS
embeddings are here outperformed by the SVDPPMI ones.
Our most important empirical result is that limiting seed words to
supposedly temporally stable ones does not improve performance
as suggested by Hamilton et al. (2016a) but instead turns out to
be harmful. Overall, we deem using ParaSimNum with SVDPPMI

and full seed lexicons to be the best solution, as its results are at
least competitive and no further parameters (e.g., a number of next
neighbors) must be chosen.

Induction Method Seed Lexicon SVDPPMI SGNS

kNN full 0.548 0.487
ParaSimNum full 0.557 0.489

RandomWalkNum full 0.544 0.436

kNN limited 0.181 0.166
ParaSimNum limited 0.249 0.191

RandomWalkNum limited 0.330 0.181

Table 5.3: Results of the synchronic evaluation in Pearson’s r
averaged over all three VAD dimensions. Best system for each seed
selection strategy (full vs. limited) and those with non-significant
differences (p ≥ 0.05) in bold.

Language Induction Method Seed Lexicon SVDPPMI SGNS

E
n

gl
is

h

kNN full 0.307 0.365
ParaSimNum full 0.348 0.361

RandomWalkNum full 0.351 0.361
kNN limited 0.273 0.153

ParaSimNum limited 0.295 0.232
RandomWalkNum limited 0.305 0.0394

G
er

m
an kNN full 0.366 0.263

ParaSimNum full 0.384 0.214
RandomWalkNum full 0.302 0.273

Table 5.4: Results of the diachronic evaluation in Pearson’s r averaged
over all three VAD dimensions. The best system for each language
and seed selection strategy (full vs. limited) is in bold, however only
the system marked with ‘4’ is significantly different (p < 0.05).
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5.2. JeSemE — Jena Semantic Explorer

JeSemE10 is an open source11 website for investigating semantic
change with distributional methods. It makes state-of-the-art meth-
ods accessible to all linguists and scholars in the (digital) humanities,
as it requires neither technical skills nor computational resources
from its users. JeSemE can be queried for semantic change in five
diachronic corpora, i.e., COHA, DTA, GBF, GBG and RSC (see
Chapter 3). JeSemE provides a plethora of information for each
word queried:

• Most similar words over time modeled with SVDPPMI.
12

• Changes in word emotions modeled with the ParaSimNum
algorithm (see Section 5.1).

• Strongly associated words as tracked with two word association
measures, i.e., PPMI and χ2.

• Information on relative word frequency over time.

JeSemE is superior to alternative systems in both capabilities and
corpus coverage. This section describes JeSemE’s resources, archi-
tecture and interface, as well as alternative systems. Several de-
tailed use cases based on JeSemE’s current version 2.1—the un-
derlying models are also stored on Zenodo13 to ensure long-term
availability—can be found in Section 5.3.

5.2.1. Used Corpora

To achieve sufficient training data with a consistent lower bound
on size we divided our corpora in temporal slices with a minimum
size of about 10M tokens or 5-grams. These cover 10 years each for
COHA, GBF and GBG, as well as 30 years for the smaller DTA and
finally two 50 year slices and one 19 year14 slice for the even smaller

10 http://jeseme.org [Accessed May 28th 2019].
11 https://github.com/JULIELab/JeSemE [Accessed May 28th 2019].
12 SVDwPPMI (see Section 4.6) was developed after most studies described in

this chapter were conducted and is not yet integrated in JeSemE.
13 https://doi.org/10.5281/zenodo.2605352 [Accessed May 28th 2019].
14 This slice is about equal in size to its two predecessors despite the lower

amount of years.

http://jeseme.org
https://github.com/JULIELab/JeSemE
https://doi.org/10.5281/zenodo.2605352
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RSC. Table 5.5 shows the resulting effective corpus size as well as the
number of types which could be modeled consistently, i.e., belong to
the 10k (5k for RSC) most frequent in each temporal slice.15 Note
that JeSemE does not cover the whole time span covered by each
corpus as described in Chapter 3, since some temporal slices contained
not enough tokens or 5-grams and were thus excluded.

Corpus Years Slices Types Tokens 5-grams

COHA 1830–2009 18 5,101 376M –
DTA 1751–1900 5 5,347 81.0M –

GB Fiction 1820–2009 19 6,492 – 14.7G
GB German 1830–2009 18 4,450 – 5.25G

RSC 1750–1869 3 3,080 24.7M –

Table 5.5: Details on corpora as used in JeSemE, i.e., covered years,
number of temporal slices, number of modelled types and overall size
in number of tokens or 5-grams (G is shorthand for 109).

5.2.2. System Architecture

JeSemE has two main components, a pipeline for processing corpora
to derive semantic information and a web service for providing this
information to users. Its pipeline utilizes a modified16 version of
hyperwords (Levy et al., 2015), while the web service is built with
the Spark Web framework17 and runs inside a Jetty18 web server.
Semantic information is stored in a PostgreSQL19 database which
thus links the two main components.

15 In honor of my graduate school an exception was made for the word Romantik
[‘romantic’, noun] in GBG which was slightly less frequent for one time span.

16 https://github.com/hellrich/hyperwords [Accessed May 28th 2019].
17 Not to be confused with the Apache Spark Big Data framework; see: http:

/www.sparkjava.com [Accessed May 28th 2019].
18 http://www.eclipse.org/jetty [Accessed May 28th 2019].
19 https://www.postgresql.org [Accessed May 28th 2019].

https://github.com/hellrich/hyperwords
http:/www.sparkjava.com
http:/www.sparkjava.com
http://www.eclipse.org/jetty
https://www.postgresql.org
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JeSemE‘s four step processing pipeline is illustrated in Figure 5.2:

• Firstly, non-alphanumeric characters are removed from the five
raw corpora and the English corpora are converted to lower case.
Normalized text is already provided in DTA, whereas GBG is
processed as described in Section 4.4.1.

• Secondly, our modified hyperwords is used to calculate χ2 and
PPMI association scores as well as SVDPPMI embeddings for
each temporal slice.20 PPMI and were χ2 were normalized, so
that all association scores for a given word add up to one—this
step is intended to make the resulting values easier to compare.

• Thirdly, we extrapolate historical word emotion values by com-
bining present day word emotion lexicons (Schmidtke et al.,
2014; Warriner et al., 2013) with the word embeddings from the
previous step. The lexicon expansion algorithm from Turney &
Littman (2003) is used for this step. Details on word emotion
modeling are provided in Section 5.1.

• Finally, we store the information derived in the previous steps,
i.e., word embeddings, word association, word frequency and
word emotions, in our database. The JeSemE version pre-
sented at the ACL 2017 conference stored pre-computed simi-
larity values between all words, whereas our latest version uses
word embeddings to calculate similarity on the fly—this re-
duces database memory demands from approximately 120GB to
40GB. The most similar words for each word (used as reference
in visualizations, see below) are cached for faster retrieval.

5.2.3. User Interface

The interactive JeSemE website consists of four pages, i.e., a search

page, a result page, a help page and an about page (providing
legally required information). The website is built, among several

20 We used 500 dimensions, a 4 word context window (maximum size possible
with Google corpora), no downsampling based on high frequency or distance,
context distribution smoothing with α = 0.75 and a minimum frequency threshold
of 100 for Google Books corpora and 50 for others.
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Figure 5.2: Diagram of JeSemE‘s processing pipeline.

other standard components, with the Thymeleaf21 template engine
and the C322 visualization framework.
The search page, shown in Figure 5.3, allows users to choose a corpus
and word under scrutiny, the latter being automatically lowercased
or lemmatized as necessary.
The result page then provides four interactive line plots23 show-
ing temporal trends in the most similar words, emotion values (in
standard deviations from the average of all words), typical context
according to association (can be toggled between χ2 and PPMI, both
normalized) as well as word frequency. Most similar words and typical
contexts start with up to four reference words, with two each selected
for being most similar/associated in the first, respectively last, time
period modeled for this corpus. Additional reference words can be
chosen with a small search bar next to each plot, thus allowing for
arbitrary comparisons. Figure 5.4 shows a cropped screenshot of the
result page for querying heart in COHA.
Our choice of line plots for the most similar words follows Kim et al.
(2014). While it might be slightly counterintuitive not to show the
word under scrutiny as part of the plot, it allows us to use a sin-
gle plot style for all offered information. We refrain from using a
two-dimensional projection for visualization (used in e.g., Kulkarni
et al. (2015), Hamilton et al. (2016c)), as we deem it potentially

21 https://www.thymeleaf.org [Accessed May 28th 2019].
22 http://c3js.org [Accessed May 28th 2019].
23 Bar plots are used for all visualizations involving RSC as it has only three

temporal slices.

https://www.thymeleaf.org
http://c3js.org
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Figure 5.3: Screenshot of JeSemE‘s search page.

misleading by implying a constant meaning of those words used as
the background (which are actually positioned by their meaning at a
single point in time). A more suitable alternative could be the novel
visualization style developed by Heimerl & Gleicher (2018) further
discussed in Section 5.2.4.
In addition to the interactive website, we also provide a REST API.
API calls need to specify the corpus to be searched and one (frequency,
emotions) or two (similarity, context) words as GET parameters,24

details being described on JeSemE‘s help page.25 This page also con-
tains short descriptions of the methods and corpora used in JeSemE
as well as references to relevant publications.

24 For example: http://jeseme.org/api/similarity?word1=Tag&word2=

Nacht&corpus=dta [Accessed May 28th 2019].
25 http://jeseme.org/help.html#api [Accessed May 28th 2019].

http://jeseme.org/api/similarity?word1=Tag&word2=Nacht&corpus=dta
http://jeseme.org/api/similarity?word1=Tag&word2=Nacht&corpus=dta
http://jeseme.org/help.html#api
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Figure 5.4: Screenshot of JeSemE‘s result page when searching for
heart in COHA, cropped to highlight the most similar word results.

5.2.4. Alternatives

Several alternative websites26 for exploring semantic change exist.
However, none of these offers a similar combination of corpus coverage
and functionality. Due to our focus on semantic change, websites
aimed at syntactic change (e.g., Schätzle et al. (2017)’s HistoBankVis
for Icelandic) are out of scope. To avoid copyright issues, no screen-
shots are provided.

26 Locally installed tools would be ill-suited for word embedding based
diachronic studies by non-technical users due to computational demands and long
training times.
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Davies provides a website27 for exploring a wide range of corpora,
including COHA and some Google Books corpora, but not GBF
and GBG (Davies, 2012, 2014). Besides providing information on
diachronic frequency, it also shows specific context words (sorted by
frequency or a form of pointwise mutual information) over time. Lists
of (context) words or tables containing context words for a specific
time span are used for visualization. No API is provided28 and users
need to create an account to perform more than a small amount
of queries. Comparisons between words are supported for COHA,
however consist only of two lists of collocates displayed next to each
other.
DTA can be queried online with DiaCollo29 for word frequency
and specific context words according to several association metrics
(Jurish, 2015). DiaCollo offers multiple visualizations, e.g., line
and bubble charts, as well as JSON or CSV for download. Words can
be compared both by their specific context words and frequency.
ESTEEM30 is intended to track changes in word similarity in social
media based on word embeddings (Arendt & Volkova, 2017). Cor-
pus selection is very limited and ill-suited for studies in diachronic
linguistic (two sets of tweets collected in 2016). They use a simple
yet elegant visualization, showing all words that were among the most
similar words for a query word on the y-axis while the x-axis indicates
whether a word was among the most similar words at a specific point
in time.
Heimerl & Gleicher (2018) created a novel visualization for word em-
bedding derived similarity over time. In their online demo31 words on
the left side of the x-axis are more similar to a query word than those
on the right and words can be selected to highlight their development
over time. The search interface of the demo is rudimentary and
they re-used SGNS embeddings from another study (Hamilton et al.,
2016c).

27 https://corpus.byu.edu [Accessed May 28th 2019].
28 https://corpus.byu.edu/faq.asp#x10a [Accessed May 28th 2019].
29 http://kaskade.dwds.de/dstar/dta/diacollo [Accessed May 28th 2019].
30 https://esteem.labworks.org [Accessed May 28th 2019].
31 http://embvis.flovis.net/s/neighborhoods.html [Accessed May 28th

2019].

https://corpus.byu.edu
https://corpus.byu.edu/faq.asp#x10a
http://kaskade.dwds.de/dstar/dta/diacollo
https://esteem.labworks.org
http://embvis.flovis.net/s/neighborhoods.html
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Gamallo et al. (2018) created the Diachronic Explorer,32 a web-
site for tracking diachronic changes in the Spanish Google Books
corpus. They calculate word similarity by representing each word
with a sparsified (syntactic) context vector, i.e., containing zeroes
as association for all contexts, except for a small number of highly
associated ones. Like JeSemE, they use line plots for visualization.
Finally, Li et al. (2019) created the Macroscope,33 which is overall
very similar to JeSemE in its capabilities. It provides trends in both
word similarity (based on SVDPPMI) and emotion with a variety of
visualizations, e.g., line plots and clustering. Word emotions are rep-
resented with a four dimensional model, i.e., concreteness in addition
to VAD, and inferred with a simple algorithm averaging the emotion
values of co-occurring words. Corpus selection is currently limited to
the English Google Books corpus.

5.3. Insights for the Digital Humanities

The following case studies demonstrate the insights available with
JeSemE and its ability to track changes in general word meaning
and word emotion. We used examples which are relevant for the
(digital) humanities, i.e., history of science and literary studies. The
aim of this section is to demonstrate possible applications and not an
in-depth study of the underlying questions, which would be widely
out of scope. Due to the qualitative and ex post nature of the
following interpretations, they can only indicate a general aptness
of JeSemE—given the general lack of evaluation options discussed
in Section 2.5.4, they should nevertheless be insightful. The experi-
mental setup of all studies consists mostly of querying JeSemE (see
Section 5.2) for words of interest. Additional reference words were
added (through JeSemE‘s interface) as necessary. In some cases
we also looked directly at the underlying corpora to provide text
examples34 for further clarification. Note that JeSemE operates
on lower case words for English, respectively normalized words for
German.

32 https://github.com/citiususc/explorador-diacronico [Accessed May
28th 2019].

33 http://www.macroscope.tech [Accessed May 28th 2019].
34 JeSemE does not provide direct access to underlying texts to avoid copyright

issues, but provides links to corpus providers and their search interfaces.

https://github.com/citiususc/explorador-diacronico
http://www.macroscope.tech
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5.3.1. History of Electricity

Our first example is from the history of science and concerned with
electricity. The modern scientific understanding of electrictiy can
be traced back to the late 17th century, with rapid advances lead-
ing to technical applications in the 19th century. Whereas early
researchers were limited to observing natural (weather) phenomena,
electricity became part of controlled laboratory experiments during
this time frame (Home, 2008, pp. 368–371)—its context and usage
in both science and culture can thus be assumed to have changed
strongly (Bertucci, 2007).
We used JeSemE to query both RSC and DTA for words related to
electricity, i.e., Elektrizität [‘electricity’], electricity, elektrisch [‘elec-
trical’], electrical, Funken [‘sparks’] and spark. Our results matched
scholarly expectations, suggesting a general applicability for studying
other words of interest from a diachronic perspective.

Electricity became over time more and more similar to spark, con-
ductor and magnetism, whereas its similarity to lightning decreased
continuously, as shown in Figure 5.5. Its increased similarity to
magnetism can be attributed to the discovery of electromagnetism
in the early 19th century (Saslow, 2002, pp. 505–512). The discov-
ery of electromagnetism also appears in DTA via an increase in
the similarity of Elektrizität [‘electricity’] and Magnet [‘magnet’]
during the middle of the 19th century. Both DTA and RSC reflect
the decrease in the similarity of electricity to naturally occurring
lightning (German: Blitz ) over time, with a simultaneous increase
of its similarity to conductor (German: Leiter). This coincides
with the known shift of the notion of electricity away from natural
phenomena and towards artificial creation and industrial applica-
tions (Morus, 2011).
The most strongly associated words (according to normalized χ2,
see Figure 5.6) for electricity (respectively German Elektrizität)
are related to electrical charge, e.g., the adjective negative. RSC
provides further indirect references to electrical charge through
adjectives describing materials used in electric experiments, i.e.,
vitreous and resinous. Historically, these predate negative as well
as positive and could be used interchangeably (Saslow, 2002, pp. 44–
45). DTA also shows these associated materials, i.e., Glas [‘glas’]
and Harz [‘resin’] (which again could be used to indicate charge,
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see e.g., Lichtenberg & Erxleben (1787, p. 434)), but only from
1811 on. Association measures were overall less helpful for uncov-
ering changes in historical understanding. The only interesting
shift is the increased assocation with magnetism, however this
change is less dynamic than those affecting words indicating charge.

Figure 5.5: Similarity of electricity to selected reference words
(y-axis, by cosine) in RSC; JeSemE screenshot with magnified
legend.

Figure 5.6: Association between electricity and selected reference
words (y-axis, by normalized χ2) in RSC; JeSemE screenshot with
magnified legend.
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electrical and its German counterpart elektrisch provide even better
indicators for the increased understanding of the underlying phe-
nomena in both RSC and DTA. Both SVDPPMI and normalized χ2

indicate matter and spark (Materie and Funken, respectively, in
German) to be relevant, pointing at a connection between elec-
tricity and philosophical concepts. Especially in the late 18th

century, scientists assumed the existence of an ‘electrical matter’,
an abstract and only vaguely defined force with possible links to
life itself (Steigerwald, 2013). The idea of electricity as a matter
was abandoned in the 19th century, as can be seen by the steep
decline of the corresponding words in terms of similarity in Figure
5.7; analogous observations can be made with regards to context
specificity in DTA as well. The association between electrical
and spark is relatively stable over time, whereas the association
between their German counterparts, i.e., elektrisch and Funken,
declines.

spark and its German counterpart Funken develop quite differently.
As shown in Figure 5.8, the former becomes less and less similar
to fire, indicating a semantic narrowing towards research on elec-
tricity. In contrast, the similarity of German Funken to Flamme
[‘flame’] and Feuer [‘fire’] is rather constant. Sparks were a part
of popular public experiments, e.g., by making the hair of some-
one glow, alluring to halos from Christian iconography (Hochadel,
2006, p. 528). Differences between DTA and RSC might be lan-
guage specific, corpus specific (as DTA is not genre specific) or
even due to different foci in research—German scientist were more
eager to focus on electromagnetism (Morus, 1998).

We could also observe an interesting shift in word emotion for Elek-
trizität and elektrisch which rise in Dominance by about 1 standard
deviation (maximal value of 0.65 for 1811–1840). In contrast, RSC
always shows electricity and electrical to be average in Dominance,
but very high in Arousal (up to 3.9 for electrical !). This is probably
both an indicator for past scientists’ excitement about a novel area
of research as well as their scientific writing style.
We deem our investigation in the historical understanding of the
notion of electricity by applying JeSemE to be fruitful, as our results
match known developments. History of science is a relatively small
field of study operating on large corpora and could thus greatly profit
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from applying automatic methods to increase the efficiency of its
research procedures and provide guidance for focusing on particu-
larly relevant documents. The agreement between JeSemE’s results
and scholarly knowledge can be seen as preliminary evidence for the
validity of our quantitative approach and spurred us to apply it to
questions from another domain in the next section.

Figure 5.7: Similarity of electrical to selected reference words
(y-axis, by cosine) in RSC; JeSemE screenshot with magnified
legend.

Figure 5.8: Similarity of spark to selected reference words (y-axis, by
cosine) in RSC; JeSemE screenshot with magnified legend.
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5.3.2. Words Linked to Romanticism

Our second example comes from literary studies and investigates how
the meaning of romantic and other words linked with Romanticism
changes over time. Romanticism can be roughly described as a artistic
and especially literary movement in late 18th and 19th century Europe.
It is commonly characterized by an increased interest in nature, the
Middle Ages and individualism (Kremer & Kilcher, 2015; Perry, 1998;
Stevens, 2004; Ziolkowski, 1969). This definition is highly simplified,
as Romanticism was, e.g., also linked to political and, at least in
Germany, scientific movements (Berlin, 2013; Jahn, 1994; Knight,
1990). However, it is sufficient to provide a temporal and lexical
starting point and show how JeSemE could be used by scholars in
the humanities.
We identified words linked to Romanticism by selecting the ten most
frequent nouns in ‘Des Knaben Wunderhorn’, a romantic collection of
short texts by von Arnim & Brentano (1806–1808) by using the anno-
tations provided in DTA (see also Hellrich & Hahn (2016c)), i.e., Gott
[‘god’], Herr [‘lord’, ‘Mr.’], Liebe [‘love’], Tag [‘day’], Frau [‘woman’,
‘Ms.’, ‘wife’], Mutter [‘mother’], Herz [‘heart’], Wein [‘wine’], Nacht
[‘night’] and Mann [‘man’, but not ‘mankind’]. Obviously, we were
also interested in the word Romantik [‘Romanticism’] itself as well as
the adjective romantisch [‘romantic’].
We queried JeSemE for these 12 German words (in GBG and DTA)
and their English translations (in GBF and COHA). Due to JeSemE’s
minimum corpus size requirements and the resulting temporal cov-
erage (see Section 5.2.1), we were mostly limited to modeling word
meaning after Romanticism.35

35 The temporal extension of Romanticism is not clearly agreed on, especially if
multiple countries or non-literary arts are to be included. The longest extension
in the aforementioned sources is given by Stevens (2004) as 1750 to 1850, the
shortest by Kremer & Kilcher (2015) with about 1796 to about 1830. DTA is the
only corpus in JeSemE, besides the domain specific and thus ill-suited RSC, to
cover this time span. In contrast, GBF covers only the 1820s and later, whereas
COHA and GBG begin with the 1830s (see Table 5.5).



5.3. INSIGHTS FOR THE DIGITAL HUMANITIES 121

Gott [‘god’] rises36 in similarity to Jesus in GBG (+0.5) as well as
GBF and COHA (about +0.25 in both), whereas their similarity
is rather volatile in DTA (drop from 0.44 to 0.03 for 1811–1840).
Neither association values nor manually inspecting text samples
provided an explanation for this development.
Differences in word emotions seem to follow a well known trend
towards secularization (Chadwick, 1975), i.e., Valence falls in all
corpora except DTA, but both initial and current Valence values
are well above average. Arousal is about average in all corpora.
Dominance is above average in the English corpora and seems
to develop parallel to Valence, whereas it is below average in
the German corpora. Figure 5.9 shows an increase in Valence
and Dominance during the 1950s, 1970s and 2000s decades in
COHA, possibly linked to the rise of Evangelicalism since the 1970s
(Brinkley, 2003, p. 900) and the civil rights movement’s adoption
of religious language (Lippy, 2010, p. 253).

Herr [‘lord’ or ‘Mr.’] seems to be increasingly used as a honorific in
German, as indicated by its rising similarity to geehrte [‘honored’]
and verehren [‘to honor’]. Especially the former is used in letters as
a German counterpart to Dear. . . . No relevant similarity changes
could be observed in DTA. In English the two senses of Herr are
signified by separate words, lord being the more interesting one.
We found it to become more similar to god and less similar to
earl over time, especially so in COHA. Emotion values in both
German corpora resemble those for lord, especially in regards to
high Valence.

Liebe [‘love’] shows a marked trend in word emotions, but not in its
most similar words. Both Valence and Dominance drop sharply—
in GBG by nearly 2 standard deviations—in all corpora since the
early 19th century (in DTA only after 1870). Ehe [‘marriage’],
which we deemed an interesting reference and added manually, is
not rated as very similar (mostly below 0.1) in GBF, but shows
a higher and increasing similarity in GBG (0.16–0.37) and COHA
(0.13–0.28) and a constant low similarity (≈ 0.15) in DTA.

36 Changes occur from the first to the last time span covered by a corpus, unless
specified otherwise.
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Figure 5.9: Emotional development of god in COHA (y-axis, in
standard deviation from average); JeSemE screenshot with magnified
legend.

Figure 5.10: Emotional development of woman in COHA (y-axis, in
standard deviation from average); JeSemE screenshot with magnified
legend.
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Tag & Nacht [‘day’ & ‘night’] show a surprisingly low mutual sim-
ilarity in German (∼ 0.35) compared to English (∼ 0.6) corpora.
We could identify two patterns typical for Nacht, but not Tag,
i.e., Nacht vom zum and Nacht vom auf [both ‘night from

to ’]. We assume these frequent patterns—e.g., for 1900 there
are 924 5-grams starting with Nacht in GBG, of which 281 use
the zum-pattern and 255 the auf -pattern—to be the most likely
explanation for the low similarity values in German.

Frau [‘woman’, ‘Ms.’ or ‘wife’] is rather similar to family related
words, i.e., Ehe [‘marriage’], Kind [‘child’], Mutter [‘mother’] and
Familie [‘family’] in the German corpora. This is less pronounced
for woman in the English corpora for which man and girl are
most similar. The GBG shows a long term upwards trend (+0.53)
in similarity with Familie, but also a drop in similarity for all
family related words in the 1980s in GBG, both could be caused
by changes in societal expectations.
Both English corpora show very static most similar words, but
dynamic word emotions. The latter effect is especially clear in
COHA, as shown in Figure 5.10. Spikes in Valence and Dominance
during the 1920s, 1940s, 1970s and 1980s match turning points in
US women’s history, i.e., first-wave feminism leading to women’s
suffrage in 1920, increased female workplace participation during
WW2 as well as second-wave feminism leading to better education,
legalized abortion and greater political equality since about 1970
(Brinkley, 2003, pp. 586–587,760,871–874). Earlier smaller spikes
might be connected to first feminist movements in the 1830s and
1840s and the growth of feminist organizations (Brinkley, 2003,
pp. 333–334). In contrast, emotion values in GBG tend towards
average, with the exception of a short counter movement in the
1940s. This might be linked to the NS regime’s propaganda37

and glorification of motherhood (Frietsch & Herkommer, 2015),
but is more pronounced here than for Mutter [‘mother’] (see next
example).

37 However, Koplenig (2017) showed a rise in Swiss German documents during
this time, which should counteract NS propaganda.
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Mutter [‘mother’] is always very similar to words for other family
members, e.g., father, husband or sister (respectively their German
equivalents). All corpora show a long term drop in Valence (e.g.,
−1.2 in GBG). In contrast, Arousal drops only in the English
corpora, but rises in GBG. COHA (but not GBF) shows spikes
in Valence for the 1940s and 1980s, which also appear in GBG
to a lesser degree (together with a spike in the 1880s). Accord-
ing to Brinkley (2003, p. 658) motherhood did become less linked
to instinctual behavior during the 1920s, however we could find
no matching changes with JeSemE. No overall changes could be
observed in DTA.

Herz [‘heart’] can be used anatomically, metaphorically or meton-
ymically (see e.g., Grimm & Grimm (1999a, cols. 1207–1223), Simp-
son & Weiner (1989a, pp. 60–65)). Both metaphorical and meton-
ymical usage were historically common despite the long-known
anatomical function (Aird, 2011; Niemeier, 2003). Figure 5.4 (pre-
viously used to illustrate JeSemE’s result page) shows its in-
creasing similarity with lungs and stroke and decreasing similarity
with soul in COHA, pointing towards a more anatomical usage.
Both GBF and GBG also show an increased similarity with other
organs (e.g., Magen [‘stomach’]), but no drop in similarity with
soul (respectively German Seele). No lasting changes could be
observed in DTA.
Word emotions in COHA, GBF and GBG show a clear drop (e.g.,
≈ 1.2 in COHA) in both Valence and Dominance. This might be
due to our ability to ‘change our heart’ in a metaphorical sense,
while we have little control over our anatomical heart and can
be threatened by cardiovascular diseases (such as stroke). This
emotional change seems to predate the similarity changes in both
English corpora but not in GBG.
Interestingly, COHA also shows hearts to become less and less
similar to heart, as it seems to be more consistently used meta-
phorically, e.g., and their foolish hearts were darkened.38

38 According to COHA’s online version (avoids blackened passage; no direct
links possible) an excerpt from LaHaye & Jenkins (2007), provided without page
number.
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Wein [‘wine’] is overall static in its similarity values and mostly also
in its emotion values. GBG shows an increase in similarity with
both foods and drinks, e.g., +0.24 for Milch ‘milk’. COHA shows
both a long term increase in Valence and Dominance as well as
rapid movement (≈ 1 standard deviation) between the 1910s and
1930s. We assume a link with (alcohol) prohibition in the USA
(1920–1933; Brinkley (2003, p. 665)), as drink is similarly effected;
other alcoholic beverages are not covered.

Mann [‘man’, but not ‘mankind’] is static in its most similar words
in GBF, COHA and DTA. However, it shows two puzzling most
similar words in GBG, i.e., Besatzung [‘crew’, ‘occupation’] and
5000, both becoming dissimilar during the 20th century. Besatzung
seems to be increasingly used in the sense of ‘occupation’ instead
of ‘crew’, which would explain less connection with Mann. Its
word emotions also shift strongly around 1900 (Arousal rises while
Valence and Dominance drop by about 2 standard deviations) and
its association with unter [‘under’] rises, due to 5-grams such as
unter der deutschen Besatzung gelitten [‘suffered under German
occupation’] (from GBG for 2000). No such explanation could be
found for 5000 which is mainly similar to (and associated with)
other numbers.

Romantik & romantisch [‘Romanticism’, ‘romantic’] were harder to
study than other words, as Romantik is only covered in GBG, but
neither DTA nor the two English corpora did contain it (respec-
tively Romanticism). We will thus discuss Romantik, romantisch
and romantic together.
As shown in Figure 5.11, Romantik is initially most similar to
Griechische [‘Greek’] and Protestantismus [‘Protestantism’], a con-
nection we cannot explain. However, other similarity trends seem
to be linked with literary scholarship, e.g., an increase in similarity
to Realismus [‘Realism’] and klassisch [‘classical’].
Author names also show the influence of literary scholarship. Sim-
ilarity to Schlegel39 is high in the 1850s and 1860s, drops in the
1870s and rises to a relatively stable value during the late 19th

century.

39 The brothers August Wilhelm and Friedrich Schlegel (Anz, 2010; Schlaffer,
2010b) were very influential during Romanticism. The earlier Johann Elias
Schlegel (Hollmer, 2010) is not connected with Romanticism.
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Figure 5.11: Similarity of Romantik [‘Romanticism’] to selected
reference words (y-axis, by cosine) in GBG; JeSemE screenshot with
magnified legend.

Figure 5.12: Association of romantic with selected reference words (y-
axis, by normalized χ2) in GBF; JeSemE screenshot with magnified
legend.
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While the Schlegel brothers were highly involved in Romanticism,
the names of other authors show a similar trend since the late 19th

century, e.g., Goethe40 and Lessing.41

There are two non-exclusive explanations for the influence of lit-
erary scholarship on the meaning of Romantik. First, the com-
position of GBG shifted towards academic texts—recall the rise
of brackets shown in Figure 3.5. Second, Romanticism is claimed
to be increasingly studied (Kremer & Kilcher, 2015, pp. 52–53).
Both explanations would also fit Romantik ’s trend towards average
emotions since the late 19th century and its increasing frequency
(the latter only between the 1890s and 1930s).

The adjective romantisch, respectively its English counterpart ro-
mantic,42 could be modeled in all corpora. Both originally referred
to something appearing fiction-like43 and were historically also
used in landscape descriptions, especially during the 18th century
(see Grimm & Grimm (1999b, cols. 1155–1157), Simpson & Weiner
(1989b, pp. 65–66)).
Results for GBG also show the influence of literary studies’ texts.
Similarity to klassisch [‘classical’] is consistently high and sim-
ilarity to Realismus [‘realism’] rises, especially from the 1900s
on. Author names (i.e., Goethe, Lessing, Schlegel) also rise in
similarity, but slightly later and less sudden. Similarity to Ironie
[‘irony’], which is seen as an important part or romantic poetic
theory (Kremer & Kilcher, 2015, pp. 92–95), rises after the 1950s.
Word emotions do again trend towards average after an increase
in the middle of the 19th century.

DTA appears to be unaffected by literary studies’ texts. Less-
ing is the only modeled author name44 and not very similar (≤
0.12). Similarity to other words is very low in general, with the
initially most similar anmutig [‘graceful’] being replaced by ju-
gendlich [‘youthful’] and Jugend [‘youth’] towards 1900. Associ-
ation with Gegend [‘area’] drops, indicating romantisch to be no

40 Johann Wolfgang von Goethe’s affiliation with Romanticism is disputed, see
e.g., Ashton (1998, p. 496), Kremer & Kilcher (2015, p. 1) or Schlaffer (2010a)).

41 Gotthold Ephraim Lessing was an Enlightenment author (Vollhardt, 2010).
42 Our analysis does not distinguish between adjective and noun.
43 They are derived from French romant [‘novel’] (see Grimm & Grimm (1999b,

cols. 1155–1157), Simpson & Weiner (1989b, pp. 65–66)).
44 Other authors only rose to popularity after the initial 1751–1780 time span.
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longer used in landscape descriptions. Valence and Dominance
rise by more than 1.5 standard deviations over an initially average
value, roughly matching trends for the 19th century in GBG.
GBF shows a rise in similarity with suspense (since the 1950s),
love (since the 1970s) and romance (especially from the 1990s on).
Association (see Figure 5.12) with scenery and fiction drops grad-
ually. In contrast, dinner becomes more and more associated from
the 1980s on. The initially high association with lean is due to the
place name Lough Lean.45 All three emotion dimensions rise in the
late 20th century and are constantly above average. Overall, results
suggest a historic popularity of romantic in landscape descriptions,
with more recent trends probably pointing towards genre literature
or courtship.

Finally, in COHA romantic’s similarity with romance oscillates
around 0.3, whereas incident46 becomes less similar while intimate
becomes more similar during the first half of the 20th century.
Association with dinner and hopeless increases during the 20th

century. Word emotions are roughly similar to those in GBF,
but more dynamic. All dimensions rise towards the 2000s and
are constantly above average. Arousal is most dynamic, however
changes do not appear to match historical events. COHA seems to
show a change away from romantic describing events that are or
appear fictive towards romantic describing courtship (intimate).

Overall, we find JeSemE‘s results for the tested words related to Ro-
manticism to be insightful, but probably more relevant for historians
than for literary scholars—most changes we observed can be linked
with societal or historical developments, e.g., the women’s rights
movement. Few are implausible, e.g., the low similarity between
Gott and Jesus in DTA for 1811–1840. Especially the application to
Romantik/romantisch/romantic showed a strong corpus dependence,
each highlighting a different aspect of Romanticism’s influence. While

45 See the following 1826 5-gram: surrounds the romantic Lough Lean. There
is no entry in the place name dictionary by Mills (2011), but a Lough Leane can
be found in Ireland [Accessed May 28th 2019]: https://www.google.de/maps/

@52.0377986,-9.5664993,14.25z
46 Used to describe exploration, as in the following text passage from COHA’s

online version (attributed to O’Brien (1921) without further details): The Mutiny
of the Bounty, perhaps the most romantic incident [...].

https://www.google.de/maps/@52.0377986,-9.5664993,14.25z
https://www.google.de/maps/@52.0377986,-9.5664993,14.25z
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GBG was influenced by literary studies, DTA and both English cor-
pora seem to show genuine semantic change away from landscape
descriptions and towards courtship.

5.4. Discussion

Our distributional approach towards semantic change seems to be
well suited for further studies. We could detect several plausible
changes in emotional connotation with JeSemE, e.g., the lowered
Valence for Gott/god coincident with a trend towards secularization.
We could also detect changes in denotation for romantisch, romantic
and arguably also Herz, lord and heart—the first two acquired a new
metaphorical sense, whereas the latter three were less often used in
an existing metaphorical sense.
Our case studies would not have been possible with any of the other
systems described in Section 5.2.4, as they lack in corpus coverage,
information on historical word emotions, and often also word similar-
ity measurements. JeSemE’s unique capability to track emotional
connotations should be interesting for many scholars, e.g., literary
scholars interested in word change affecting later reception—recently
widely discussed in regards to antiquated language and racism in
children’s books (Hahn et al., 2015). It could also be useful for social
scientists or historians, as demonstrated by emotional changes for
woman or wine in COHA being aligned with historical events.
Regarding corpora, GBG seems to be ill-suited for diachronic studies,
due to changes in its composition which lead to artifacts, e.g., the
similarity of different author names to Romantik. DTA showed few
changes in Section 5.3.2, but seemed to be well suited for studying
the history of science in Section 5.3.1. The domain specific RSC
also proved to be well-suited for studying the history of science.
For general language change GBF and COHA often provided similar
results.
We could not identify any delays between historic events and mea-
surable effects in corpora, in contrast to delays of about one decade
in studies by Bentley et al. (2014) and Tahmasebi & Risse (2017a).
Most of the trends we observed are probably too long-term for such
an effect to be discernible. A notable exception was COHA showing
changes connected with distinct historical events, e.g., Prohibition,
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without any delays, probably due to the inclusion of magazines and
newspapers.
While the results of our case studies are plausible, they can only
provide limited proof of JeSemE’s validity. Additional case studies
or the creation of a semantic change gold standard (see Section 2.5.4)
would be necessary to quantify its validity.



Chapter 6

Conclusion

Word embeddings can be used as a tool for diachronic linguistics and
the digital humanities. Chapter 2 provided background information
on relevant algorithms, whereas Chapter 3 introduced relevant di-
achronic corpora. The reliability of word embedding algorithms was
studied in Chapter 4. Finally, Chapter 5 introduced a novel way to
model word emotions and presented the JeSemE website as well as
two case studies.
Reliability issues affect many popular embedding algorithms, i.e.,
they produce different word embeddings (and thus judgments on word
similarity) when experiments are repeated. Such differences can be
highly misleading in studies using the most similar words to track
and visualize semantic change. This, in turn, makes many studies
hard to reproduce,1 diminishing their scientific value. To the best
of my knowledge, I was the first to study the (lacking) reliability
of word embeddings. Luckily, I found variants of the SVDPPMI

algorithm—especially my novel SVDwPPMI (see Section 4.6)—to be
perfectly reliable. This problem is not specific to diachronic research,
but can also affect synchronic studies on, e.g., language variation
(Kulkarni et al., 2016), gender roles (Bolukbasi et al., 2016a) or
social media content (see e.g., Preoţiuc-Pietro et al. (2016), Arendt
& Volkova (2017)).
Emotional connotation information was derived using a bootstrap-
ping process developed together with Sven Buechel. The process uses

1 Following Ivie & Thain (2018), reproduction consists in carrying “out tasks
that are equivalent in substance to the original, but may differ in ways that are
not expected to be significant to the final result” (Ivie & Thain, 2018, p. 63:4).
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word similarity judgments derived from historical texts to project
current fine-grained emotional information on historical language. We
evaluated this method by creating the first gold standard for historical
word emotions based on expert judgments.
The Jena Semantic Explorer (JeSemE) website gives non-technical
users access to state-of-the-art distributional semantics. It tracks
changes in both denotation and emotional connotation as well as word
association and frequency. It provides access to five diachronic cor-
pora, i.e., the Corpus of Historical American English, the Deutsches
Textarchiv Kernkorpus, the German and English Fiction sub-corpora
of the Google Books Ngram corpus and the Royal Society Corpus.
The digital humanities case studies used JeSemE to investigate the
history of science as well as words relevant to Romanticism. They
showed JeSemE to produce plausible results and thus indicate that
such a distributional approach is suitable.
Overall, my research provides methodological insights relevant for
general applications of word embeddings as well as tailored solutions
for diachronic research. Scholars interested in the semantic change of
German or English during the last two centuries can now use JeSemE
to easily utilize reliable state-of-the-art methods.
There are several interesting areas for future research:

• Additional studies on the unreliable nature of word embeddings
might provide insight into the structure of the space described
by them. Embedding spaces were already shown to behave
in peculiar ways, e.g., word embeddings populate only a small
part of the available space (Mimno & Thompson, 2017). While
word embeddings are unquestionably well-suited for judging
the similarity of words and compute analogies, it still needs
to be investigated how and why they can achieve this (Arora
et al., 2016; Gittens et al., 2017; Patel & Bhattacharyya, 2017).
The reliability of contextualized word embeddings (e.g., BERT
(Devlin et al., 2018) or ELMo (Peters et al., 2018)) should also
be investigated.

• It seems advisable to investigate the reliability of other popular
digital humanities methods, e.g., Topic modeling via Latent
Dirichlet Allocation (Blei et al., 2003; Jockers, 2013; Mimno,
2012; Schöch, 2017). Quantifying topic modeling’s (unreliable)
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probabilistic nature2 might lead to a resurgence of SVD-based
methods (Deerwester et al., 1990) which are reliable yet need
performance improvements.3

• Alternative approaches for creating low-memory word (vector)
representations might be worth exploring, e.g., PPMI vectors
with a minimum association (Levy et al., 2015) or a maximum
number of associated contexts per modeled word (Gamallo,
2017). While such representations currently perform worse than
word embeddings, they are reliable and at least some seem
to be immune to artifacts caused by dimensionality reduction
(Dubossarsky et al., 2017).

• Modeling historical emotional connotation is still a fledgling
field and might profit from ongoing research on modeling emo-
tions in general, e.g., using deep learning (Buechel & Hahn,
2018b). It would also be helpful to have larger gold standards
for evaluation.

• Diachronic semantic research in general is hampered by this
lack of gold standards, often limiting evaluation to qualitative
assessments of plausibility (see Section 2.5.4).

• Finally, JeSemE was merely used in two case studies. Others
could adopt JeSemE for their studies, e.g., studies in the his-
tory of science. This might, however, necessitate the addition
of further corpora from other domains or languages.

2 For example, we found only about half of the resulting topics to be stable
during repeated experiments in an unrelated study (Hellrich & Rzymski, 2019).

3 Their inability to add new documents to a collection without reprocessing
the whole collection should be of little relevance for applications in the digital
humanities.
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Portorož, Slovenia, May 23–28, 2016, pp. 2502–2509.

Nathan Halko, Per-Gunnar Martinsson & Joel A. Tropp (2011):
Finding Structure with Randomness: Probabilistic Algorithms for
Constructing Approximate Matrix Decompositions. In: SIAM
Review, 53(2): 217–288.

William L. Hamilton, Kevin Clark, Jure Leskovec & Dan Jurafsky
(2016a): Inducing Domain-Specific Sentiment Lexicons from Un-
labeled Corpora. In: EMNLP 2016 — Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing.
Austin, TX, USA, November 1–5, 2016, pp. 595–605.

William L. Hamilton, Jure Leskovec & Dan Jurafsky (2016b):
Cultural Shift or Linguistic Drift? Comparing Two Computational
Measures of Semantic Change. In: EMNLP 2016 — Proceedings
of the 2016 Conference on Empirical Methods in Natural Language
Processing. Austin, TX, USA, November 1–5, 2016, pp. 2116–2121.

William L. Hamilton, Jure Leskovec & Dan Jurafsky (2016c): Di-
achronic Word Embeddings Reveal Statistical Laws of Semantic
Change. In: ACL 2016 — Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics: Long Papers.
Berlin, Germany, August 7–12, 2016, pp. 1489–1501.

Zellig S. Harris (1954): Distributional Structure. In: WORD, 10(2–3):
146–162.

F. Heimerl & M. Gleicher (2018): Interactive Analysis of Word Vector
Embeddings. In: Computer Graphics Forum, 37(3): 253–265.

Johannes Hellrich, Sven Buechel & Udo Hahn (2018a): JeSemE:
a Website for Exploring Diachronic Changes in Word Meaning
and Emotion. In: COLING 2018 — Proceedings of the 27th
International Conference on Computational Linguistics: System
Demonstrations. Santa Fe, NM, USA, August 20–26, 2018, pp.
10–14.

Johannes Hellrich, Sven Buechel & Udo Hahn (2019a): Modeling
Word Emotion in Historical Language: Quantity Beats Supposed
Stability in Seed Word Selection. In: LaTeCH-CLfL 2019 —
Proceedings of the 3rd Joint SIGHUM Workshop on Computational
Linguistics for Cultural Heritage, Social Sciences, Humanities and



BIBLIOGRAPHY 147

Literature @ NAACL 2019. Minneapolis, MN, USA, June 7, 2019,
pp. 1–11.

Johannes Hellrich & Udo Hahn (2016a): An Assessment of Experi-
mental Protocols for Tracing Changes in Word Semantics Relative
to Accuracy and Reliability. In: LaTeCH 2016 — Proceedings of
the 10th SIGHUM Workshop on Language Technology for Cultural
Heritage, Social Sciences, and Humanities @ ACL2016. Berlin,
Germany, August 11, 2016, pp. 111–117.

Johannes Hellrich & Udo Hahn (2016b): Bad company—
Neighborhoods in neural embedding spaces considered harmful. In:
COLING 2016 — Proceedings of the 26th International Conference
on Computational Linguistics: Technical Papers. Osaka, Japan,
December 11–16, 2016, pp. 2785–2796.

Johannes Hellrich & Udo Hahn (2016c): Measuring the dynamics
of lexico-semantic change since the German Romantic period.
In: Digital Humanities 2016 — Conference Abstracts of the 2016
Conference of the Alliance of Digital Humanities Organizations
(ADHO). Kraków, Poland, 11–16 July 2016, pp. 545–547.

Johannes Hellrich & Udo Hahn (2017a): Don’t Get Fooled by
Word Embeddings: better Watch their Neighborhood. In: Digital
Humanities 2017 — Conference Abstracts of the 2017 Conference
of the Alliance of Digital Humanities Organizations (ADHO).
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